Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Aging (Albany NY) ; 15(23): 14019-14038, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38085649

ABSTRACT

Aging-associated cardiovascular diseases depend on the longitudinal deterioration of stem cell dynamics. The entire mechanism behind it is not completely understood. However, many studies suggest that endocrine pathways, particularly the insulin-like growth factor-1(IGF1) signaling pathway are involved in cardioprotection, especially in stem-cell treatments. Here, we investigated the role of a co-chaperone, carboxyl-terminus of Hsp70 interacting protein (CHIP) in the aspects of growth factor secretion and receptor stabilization in mesenchymal stem cells (MSCs). Briefly, we overexpressed CHIP in rat adipose-derived stem cells (rADSCs) and explored the consequences in vitro, and in vivo, in spontaneously hypertensive rats (SHR). Our data revealed that CHIP overexpression in rADSCs promoted the secretion of insulin-like growth factor-1 (IGF1) and IGF binding protein-3 (IGFBP3) as per immunoblot/cytokine array analysis. We also found that these results were dependent on the nuclear translocation of signal transducer and activator of transcription 3 (STAT3) in rADSCs. Further, the CHIP co-chaperone was also involved in the stabilization of the receptor of IGF1 (IGF1R); interactions between the beta transmembrane region of IGF1R, and the tetracopeptide repeat (TPR) domain of CHIP were evident. Importantly, after the transplantation of lentiviral CHIP overexpression of rADSCs (rADSCsCHIP-WT) into nine months aging-SHR led to an increase in their cardiac function - increased ejection fraction and fractional shortening (≈15% vs. control SHR) - as well as a decrease in their heart size and heart rate, respectively. Altogether, our results support the use of CHIP overexpressing stem cells for the mitigation of cardiac hypertrophy and remodeling associated with late-stage hypertension.


Subject(s)
Hypertension , Receptor, IGF Type 1 , Animals , Rats , Adipocytes/metabolism , Aging , Insulin-Like Growth Factor I/metabolism , Receptor, IGF Type 1/metabolism , Signal Transduction , Stem Cells/metabolism
2.
Phytomedicine ; 84: 153450, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33611212

ABSTRACT

BACKGROUND: Cardiovascular diseases are caused by multitudes of stress factors like hypertension and their outcomes are associated with high mortality and morbidity worldwide. Nerolidol, a naturally occurring sesquiterpene found in several plant species, embodies various pharmacological benefits against numerous health disorders. However, their effects on hypertension induced cardiac complications are not completely understood. PURPOSE: The present study is to elucidate the efficacy of nerolidol against hypertension related cardiac hypertrophy in spontaneously hypertensive rats (SHRs). STUDY DESIGN: For preliminary in vitro studies, H9c2 cardiomyoblasts cells were challenged with 200 nM Angiotensin-II (AngII) for 12 h and were then treated with nerolidol for 24 h. The hypertrophic effect in H9c2 cells were analyzed by actin staining and the modulations in hypertrophic protein markers and mediators were determined by Western blotting analysis. For in vivo experiments, sixteen week-old male Wistar Kyoto (WKY) and SHRs were segregated into five groups (n = 9): Control WKY, hypertensive SHRs, SHRs with low dose (75 mg/kg b.w/day) nerolidol, SHRs with high dose (150 mg/kg b.w/day) nerolidol and SHR rats treated with an anti-hypertensive drug captopril (50 mg/kg b.w/day). Nerolidol treatment was given orally for 8 weeks and were analysed through Echocardiography. After euthanasia, hematoxylin and eosin staining, Immunohistochemical analysis and Western blotting was performed on left ventricle tissue. RESULTS: Western blotting analysis revealed that nerolidol significantly attenuates AngII induced expression of hypertrophic markers ANP and BNP in H9c2 cardiomyoblasts. In addition, actin staining further ascertained the potential of nerolidol to ameliorate AngII induced cardiac hypertrophy. Moreover, nerolidol administration suppressed the hypertrophic signalling mediators like calcineurin, GATA4, Mel-18, HSF-2 and IGFIIR in a dose-dependent fashion. In silico studies also ascertained the role of Mel-18 in the ameliorative effects of nerolidol. Further, these intriguing in vitro results were further confirmed in in vivo SHR model. Oral neraolidol in SHRs efficiently reduced blood pressure and ameliorated hypertension induced cardiac hypertrophic effects by effectively reducing the levels of proteins involved in cardiac MeL-18-HSF2-IGF-IIR signalling. CONCLUSION: Collectively, the data reveals that the cardioprotective effect of nerolidol against hypertension induced hypertrophy involves reduction in blood pressure and regulation of the cardiac Mel-18-IGFIIR signalling cascade.


Subject(s)
Antihypertensive Agents/therapeutic use , Cardiomegaly/drug therapy , Hypertension/drug therapy , Polycomb Repressive Complex 1/metabolism , Receptor, IGF Type 2/metabolism , Sesquiterpenes/therapeutic use , Signal Transduction/drug effects , Small Molecule Libraries/therapeutic use , Animals , Blood Pressure/drug effects , Male , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Sesquiterpenes/pharmacology , Small Molecule Libraries/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...