Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Food Microbiol ; 192: 77-85, 2015 Jan 02.
Article in English | MEDLINE | ID: mdl-25317503

ABSTRACT

High sugar products (sugar content > 50%) are generally considered to be stable against all forms of microbial spoilage during a prolonged shelf life of several months. However, one specific subgroup of micro-organisms, the xerophilic moulds, can develop quite fast on the surface of food products with a reduced water activity (< 0.85). The chance whether these xerophilic moulds are able to grow on the food product depends on the combination of intrinsic factors (e.g., water activity and pH) and the storage conditions (e.g., temperature). This study examines the development of growth/no growth models for the xerophilic moulds Wallemia sebi and Eurotium herbariorum in a sugar rich broth. Growth/no growth models are predictive models that are designed to give a prediction about the probability of growth of a spoilage micro-organism under a specific set of environmental conditions. In this research, a water activity between 0.75 and 0.90, a pH between 5.0 and 6.2, an ethanol concentration between 0% and 5% (g EtOH/g H2O) and their interactions were tested. The inoculated media were stored at 22 °C (± 1 °C) during a prolonged test period (up to 120 days). The obtained models were also validated in a chocolate-based food product (ganache). The resulting growth/no growth models show that the growth of W. sebi and E. herbariorum can be inhibited for a prolonged time (> 3 months) if an ethanol concentration of 5% on the water phase is present in the food product, irrespective of water activity values between 0.89 and 0.755. The necessary amount of ethanol for shorter shelf lives can be calculated with the models that were built. Although the models have not been validated thoroughly in actual food products, the preliminary results that were obtained by testing the model on a ganache indicated that the models are capable of delivering safe predictions.


Subject(s)
Basidiomycota/growth & development , Ethanol/chemistry , Eurotium/growth & development , Food Microbiology , Models, Theoretical , Water/chemistry , Hydrogen-Ion Concentration , Temperature
2.
Food Microbiol ; 45(Pt A): 119-25, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25481068

ABSTRACT

Intermediate moisture foods (IMF) are in general microbiologically stable products. However, due to health concerns consumer demands are increasingly forcing producers to lower the fat, sugar and preservatives content, which impede the stability of the IMF products. One of the strategies to counteract these problems is the storage of IMF products at lower temperatures. Thorough knowledge on growth/no growth boundaries of Zygosaccharomyces rouxii in IMF products, also at different storage temperatures is an important tool for ensuring microbiologically stability. In this study, growth/no growth models for Z. rouxii, developed by Vermeulen et al. (2012) were further extended by incorporating the factor temperature. Three different data sets were build: (i) without organic acids, (ii) with acetic acid (10,000 ppm on product basis) and (iii) with sorbic acid (1500 ppm on product basis). For each of these data sets three different growth/no growth models were developed after 30, 60 and 90 days. The results show that the influence of temperature is only significant in the lower temperature range (8-15 °C). Also, the effect of pH is negligible (pH 5.0-6.2) unless organic acids are present. More specific, acetic acid had only an additive effect to ethanol and aw at low pH, whereas sorbic acid had also an additive effect at the higher pH values. For incubation periods longer than 30 days the growth/no growth boundary remained stable but enlarged gradually between day 60 and 90, except for the lower temperature range (<12 °C) where the boundary shifts to more stringent environmental conditions.


Subject(s)
Acetic Acid/pharmacology , Food Microbiology , Food Preservatives , Sorbic Acid/pharmacology , Zygosaccharomyces/growth & development , Ethanol/pharmacology , Hydrogen-Ion Concentration , Logistic Models , Models, Theoretical , Temperature , Water/metabolism , Zygosaccharomyces/drug effects
3.
Food Microbiol ; 32(2): 389-96, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22986205

ABSTRACT

The microbial stability of intermediate moisture foods (IMF) is linked with the possible growth of osmophilic yeast and xerophilic moulds. As most of these products have a long shelf life the assessment of the microbial stability is often an important hurdle in product innovation. In this study a screening of several Zygosaccharomyces rouxii strains towards individual stress factors was performed and growth/no growth models were developed, incorporating a(w), pH, acetic acid and ethanol concentrations. These stress factors are important for sweet IMF such as chocolate fillings, ganache, marzipan, etc. A comparison was made between a logistic regression model with and without the incorporation of time as an explanatory variable. Next to the model development, a screening of the effect of chemical preservatives (sorbate and benzoate) was performed, in combination with relevant stress factors within the experimental design of the model. The results of the study showed that the influence of the investigated environmental stress factors on the growth/no growth boundary of Z. rouxii is the most significant in the first 30-40 days of incubation. Incorporating time as an explanatory variable in the model had the advantage that the growth/no growth boundary could be predicted at each time between 0 and 60 days of incubation at 22 °C. However, the growth/no growth boundary enlarged significantly leading to a less accurate prediction on the growth probability of Z. rouxii. The developed models can be a useful tool for product developers of sweet IMF. Screening with chemical preservatives revealed that benzoic acid was much less active towards Z. rouxii than sorbic acid or a mixture of both acids.


Subject(s)
Culture Media/chemistry , Water/analysis , Zygosaccharomyces/chemistry , Zygosaccharomyces/growth & development , Acetic Acid/pharmacology , Benzoic Acid/pharmacology , Culture Media/metabolism , Food Microbiology , Food Preservatives/pharmacology , Hydrogen-Ion Concentration , Kinetics , Logistic Models , Microbial Viability/drug effects , Models, Biological , Sorbic Acid/pharmacology , Water/metabolism , Zygosaccharomyces/drug effects , Zygosaccharomyces/metabolism
4.
J Food Prot ; 75(4): 706-16, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22488059

ABSTRACT

The microbiological performance of a food safety management system in a food service operation was measured using a microbiological assessment scheme as a vertical sampling plan throughout the production process, from raw materials to final product. The assessment scheme can give insight into the microbiological contamination and the variability of a production process and pinpoint bottlenecks in the food safety management system. Three production processes were evaluated: a high-risk sandwich production process (involving raw meat preparation), a medium-risk hot meal production process (starting from undercooked raw materials), and a low-risk hot meal production process (reheating in a bag). Microbial quality parameters, hygiene indicators, and relevant pathogens (Listeria monocytogenes, Salmonella, Bacillus cereus, and Escherichia coli O157) were in accordance with legal criteria and/or microbiological guidelines, suggesting that the food safety management system was effective. High levels of total aerobic bacteria (>3.9 log CFU/50 cm(2)) were noted occasionally on gloves of food handlers and on food contact surfaces, especially in high contamination areas (e.g., during handling of raw material, preparation room). Core control activities such as hand hygiene of personnel and cleaning and disinfection (especially in highly contaminated areas) were considered points of attention. The present sampling plan was used to produce an overall microbiological profile (snapshot) to validate the food safety management system in place.


Subject(s)
Food Contamination/prevention & control , Food Handling/standards , Food Services/standards , Hygiene , Colony Count, Microbial , Consumer Product Safety , Food Contamination/analysis , Food Handling/methods , Food Microbiology , Food Safety , Humans , Meat Products/microbiology , Risk Assessment , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...