Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 51(14): 3958-65, 2003 Jul 02.
Article in English | MEDLINE | ID: mdl-12822930

ABSTRACT

The present study was designated to evaluate the antimicrobial and antioxidant activities of the essential oil, obtained by using a Clevenger distillation apparatus, water soluble (polar) and water insoluble (nonpolar) subfractions of the methanol extracts from aerial parts of Satureja hortensis L. plants, and methanol extract from calli established from the seeds using Gamborg's B5 basal media supplemented with indole-3-butyric acid (1.0 ppm), 6-benzylaminopurine (N(6)-benzyladenine) (1.0 ppm), and sucrose (2.5%). The antimicrobial test results showed that the essential oil of S. hortensis had great potential antimicrobial activities against all 23 bacteria and 15 fungi and yeast species tested. In contrast, the methanol extract from callus cultures and water soluble subfraction of the methanol extract did not show antimicrobial activities, but the nonpolar subfraction had antibacterial activity against only five out of 23 bacterial species, which were Bacillus subtilis, Enterococcus fecalis, Pseudomonas aeruginosa, Salmonella enteritidis, and Streptococcus pyogenes. Antioxidant studies suggested that the polar subfractions of the methanol extract of intact plant and methanol extract of callus cultures were able to reduce the stable free radical 2,2-diphenyl-1-picrylhydrazyl to the yellow-colored diphenylpicrylhydrazine. In this assay, the strongest effect was observed for the tissue culture extract, with an IC(50) value of 23.76 +/- 0.80 microgram/mL, which could be compared with the synthetic antioxidant agent butylated hydroxytoluene. On the other hand, linoleic acid oxidation was 95% inhibited in the presence of the essential oil while the inhibition was 90% with the chloroform subfraction of the intact plant. The chemical composition of a hydrodistilled essential oil of S. hortensis was analyzed by gas chromatography (GC)/flame ionization detection (FID) and a GC-mass spectrometry system. A total 22 constituents representing 99.9% of the essential oil were identified by GC-FID analaysis. Thymol (29.0%), carvacrol (26.5%), gamma-terpinene (22.6%), and p-cymene (9.3%) were the main components.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Antioxidants/pharmacology , Oils, Volatile/chemistry , Plant Extracts/pharmacology , Satureja/chemistry , Bacteria/drug effects , Chromatography, Gas , Gas Chromatography-Mass Spectrometry , Methanol
2.
J Agric Food Chem ; 48(6): 2576-81, 2000 Jun.
Article in English | MEDLINE | ID: mdl-10888587

ABSTRACT

The isolated essential oils from seven air-dried plant species were analyzed by gas chromatography-mass spectrometry (GC-MS). Thymus vulgaris (thyme), Origanum vulgare (oregano), and Origanumdictamus (dictamus) essential oils were found to be rich in phenolic compounds representing 65.8, 71.1, and 78.0% of the total oil, respectively. Origanum majorana (marjoram) oil was constituted of hydrocarbons (42.1%), alcohols (24.3%), and phenols (14.2%). The essential oil from Lavandula angustifolia Mill. (lavender) was characterized by the presence of alcohols (58.8%) and esters (32.7%). Ethers predominated in Rosmarinus officinalis (rosemary) and Salvia fruticosa (sage) essential oils, constituting 88.9 and 78.0%, respectively. The radial growth, conidial germination, and production of Penicillium digitatum were inhibited completely by oregano, thyme, dictamus, and marjoram essential oils at relatively low concentrations (250-400 microg/mL). Lavender, rosemary, and sage essential oils presented less inhibitory effect on the radial growth and conidial germination of P. digitatum. Conidial production of P. digitatum was not affected by the above oils at concentrations up to 1000 microg/mL. Apart from oregano oil, all essential oils were more effective in the inhibition of conidial germination than of radial growth. The monoterpene components, which participate in essential oils in different compositions, seem to have more than an additive effect in fungal inhibition.


Subject(s)
Antifungal Agents/pharmacology , Lamiaceae/chemistry , Magnoliopsida/chemistry , Oils, Volatile/analysis , Oils, Volatile/pharmacology , Penicillium/drug effects , Antifungal Agents/analysis , Gas Chromatography-Mass Spectrometry/methods , Greece , Microbial Sensitivity Tests , Phenols/analysis , Phenols/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...