Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Neurosci ; 10: 117, 2016.
Article in English | MEDLINE | ID: mdl-27242430

ABSTRACT

The etiology of amyotrophic lateral sclerosis (ALS), a fatal motor neuron disorder characterized by progressive muscle weakness and spasticity, remains largely unknown. Approximately 5-10% of cases are familial, and of those, 15-20% are associated with mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1). Mutations of the SOD1 gene interrupt cellular homeostasis and contribute to cellular toxicity evoked by the presence of altered SOD1, along with other toxic species, such as advanced glycation end products (AGEs). AGEs trigger activation of their chief cell surface receptor, RAGE (receptor for advanced glycation end products), and induce RAGE-dependent cellular stress and inflammation in neurons, thereby affecting their function and leading to apoptosis. Here, we show for the first time that the expression of RAGE is higher in the SOD1 transgenic mouse model of ALS vs. wild-type mouse spinal cord. We tested whether pharmacological blockade of RAGE may delay the onset and progression of disease in this mouse model. Our findings reveal that treatment of SOD1 transgenic mice with soluble RAGE (sRAGE), a natural competitor of RAGE that sequesters RAGE ligands and blocks their interaction with cell surface RAGE, significantly delays the progression of ALS and prolongs life span compared to vehicle treatment. We demonstrate that in sRAGE-treated SOD1 transgenic animals at the final stage of the disease, a significantly higher number of neurons and lower number of astrocytes is detectable in the spinal cord. We conclude that RAGE antagonism may provide a novel therapeutic strategy for ALS intervention.

2.
Protein Eng Des Sel ; 28(11): 501-6, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26243887

ABSTRACT

The catalytic bioscavenger phosphotriesterase (PTE) is experimentally an effective antidote for organophosphate poisoning. We are interested in the molecular engineering of this enzyme to confer additional functionality, such as improved in vivo longevity. To this aim, we developed PTE cysteine mutants with free sulfhydryls to allow macromolecular attachments to the protein. A library of PTE cysteine mutants were assessed for efficiency in hydrolysing the toxic pesticide metabolite paraoxon, and screened for attachment with a sulfhydryl-reactive small molecule, fluorescein 5-maleimide (F5M), to examine cysteine availability. We established that the newly incorporated cysteines were readily available for labelling, with R90C, E116C and S291C displaying the highest affinity for binding with F5M. Next, we screened for efficiency in attaching a large macromolecule, a 30 000 Da polyethylene glycol (PEG) molecule. Using a solid-phase PEGylation strategy, we found the E116C mutant to be the best single-mutant candidate for attachment with PEG30. Kinetic activity of PEGylated E116C, with paraoxon as substrate, displayed activity approaching that of the unPEGylated wild-type. Our findings demonstrate, for the first time, an efficient cysteine mutation and subsequent method for sulfhydryl-specific macromolecule attachment to PTE.


Subject(s)
Cysteine/chemistry , Organophosphates/metabolism , Phosphoric Triester Hydrolases/chemistry , Phosphoric Triester Hydrolases/metabolism , Cysteine/genetics , Cysteine/metabolism , Fluoresceins/chemistry , Fluoresceins/metabolism , Kinetics , Models, Molecular , Mutation , Organophosphates/analysis , Paraoxon/analysis , Paraoxon/metabolism , Phosphoric Triester Hydrolases/genetics , Protein Engineering
3.
Front Cell Neurosci ; 9: 485, 2015.
Article in English | MEDLINE | ID: mdl-26733811

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disorder of largely unknown pathogenesis. Recent studies suggest that enhanced oxidative stress and neuroinflammation contribute to the progression of the disease. Mounting evidence implicates the receptor for advanced glycation end-products (RAGE) as a significant contributor to the pathogenesis of certain neurodegenerative diseases and chronic conditions. It is hypothesized that detrimental actions of RAGE are triggered upon binding to its ligands, such as AGEs (advanced glycation end products), S100/calgranulin family members, and High Mobility Group Box-1 (HMGB1) proteins. Here, we examined the expression of RAGE and its ligands in human ALS spinal cord. Tissue samples from age-matched human control and ALS spinal cords were tested for the expression of RAGE, carboxymethyllysine (CML) AGE, S100B, and HMGB1, and intensity of the immunofluorescent and immunoblotting signals was assessed. We found that the expression of both RAGE and its ligands was significantly increased in the spinal cords of ALS patients versus age-matched control subjects. Our study is the first report describing co-expression of both RAGE and its ligands in human ALS spinal cords. These findings suggest that further probing of RAGE as a mechanism of neurodegeneration in human ALS is rational.

SELECTION OF CITATIONS
SEARCH DETAIL
...