Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Expert Opin Drug Deliv ; 20(9): 1231-1249, 2023.
Article in English | MEDLINE | ID: mdl-37786284

ABSTRACT

INTRODUCTION: Innovative delivery systems are a promising and attractive approach for drug targeting in pharmaceutical technology. Among the various drug delivery systems studied, the association of strategies based on nanoparticles and microparticles, called nano-in-microparticles, has been gaining prominence as it allows targeting in a specific and personalized way, considering the physiological barriers faced in each disease. AREAS COVERED: This review proposes to discuss nano-in-micro systems, updated progress on the main biomaterials used in the preparation of these systems, preparation techniques, physiological considerations, applications and challenges, and possible strategies for drug administration. Finally, we bring future perspectives for advances in clinical and field translation of multifunctional systems based on nano-in-microparticles. EXPERT OPINION: This article brings a new approach to exploring the use of multifunctional systems based on nano-in-microparticles for different applications, in addition, it also emphasizes the use of biomaterials in these systems and their limitations. There is currently no study in the literature that explores this approach, making a review article necessary to address this association of strategies for application in pharmaceutical technology.


Subject(s)
Drug Delivery Systems , Nanoparticles , Drug Delivery Systems/methods , Biocompatible Materials , Technology, Pharmaceutical
2.
J Pharm Sci ; 108(4): 1559-1568, 2019 04.
Article in English | MEDLINE | ID: mdl-30513320

ABSTRACT

Alginate-based polyelectrolyte complexes (PECs) and hydrogel were engineered as platforms for local bevacizumab (BVZ) therapy. This study provides deep comprehension on the microstructures of such systems, and their correlation with drug-release patterns. PECs and hydrogel were characterized using Fourier transform infrared spectroscopy, small-angle X-ray scattering, scanning electron microscopy, atomic force microscopy, and porosimetry. Structural investigations indicated that PECs are formed by supramolecular interactions, resulting in physically cross-linked polymer networks, whereas the BVZ-loaded hydrogel has a more compact and rigid structure, promoting better entrapment of BVZ. PECs and hydrogel were able to control the BVZ release for 4 and 8 days, respectively. Their release profiles correlated best with the Higuchi and Korsmeyer-Peppas models, respectively, indicating drug diffusion as the limiting step for drug release. Furthermore, BVZ remained biologically active in vitro after its incorporation into the hydrogel system. Together, these studies confirm that PECs and hydrogel exhibit different porous structures and physicochemical properties, making them promising platforms that allow the modulation of BVZ release meeting different requirements.


Subject(s)
Alginates/chemistry , Angiogenesis Inhibitors/administration & dosage , Bevacizumab/administration & dosage , Drug Carriers/chemistry , Angiogenesis Inhibitors/pharmacokinetics , Bevacizumab/pharmacokinetics , Drug Liberation , Human Umbilical Vein Endothelial Cells , Humans , Hydrogels/chemistry , Hydrogen-Ion Concentration , Polyelectrolytes/chemistry , Porosity , Recombinant Proteins/metabolism , Vascular Endothelial Growth Factor A/antagonists & inhibitors
3.
J Mech Behav Biomed Mater ; 65: 317-333, 2017 01.
Article in English | MEDLINE | ID: mdl-27631170

ABSTRACT

The retrogradation of high amylose starch (5% or 10%), by isothermal cycles at 4°C (method 1) or by alternating thermal cycles (method 2) was efficient and promoted important structural modifications. Hydrogels of gellan gum and starch retrograded blends, containing or not ketoprofen, were prepared by ionic and dual cross-linking, at different concentrations of polymer and cross-linkers, and characterized by texture and rheological analysis, X-ray diffraction and morphological analysis. The ionic cross-linking and starch retrograded by method 1 contributed to the improvement of hardness and cohesiveness of hydrogels while the dual cross-linking and starch retrograded by method 2 favored the adhesiveness. The rising of polymer concentration lead to the improvement of all mechanical parameters. Rheological data demonstrated that non-cross-linked dispersions showed a behavior of weak gels and the cross-linked hydrogels presented a predominantly elastic behavior (G'≫G″), peculiar of strong gels. X-ray diffraction, rheological data and the scanning electron microscopy (FEG-SEM) revealed that the increase of polymers and cross-linkers concentration and the presence of drug resulted in stronger and more stable tridimensional structures. The suitable adhesiveness and high strength and elasticity of hydrogels H253IC-KT, H255IC-KT, H21053DC-KT and H21055DC-KT make them more promising materials for the design of mucoadhesive drug delivery systems.


Subject(s)
Drug Delivery Systems , Hydrogels/chemistry , Polysaccharides, Bacterial/chemistry , Starch/chemistry , Rheology
SELECTION OF CITATIONS
SEARCH DETAIL
...