Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 9561, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33953256

ABSTRACT

Extracellular adenosine suppresses T cell immunity in the tumor microenvironment and in vitro treatment of memory T cells with adenosine can suppress antigen-mediated memory T cell expansion. We describe utilizing the recall antigen assay platform to screen small molecule drug off-target effects on memory T cell expansion/function using a dosing regimen based on adenosine treatment. As a proof of principle, we show low dose GS-5734, a monophosphoramidate prodrug of an adenosine analog, does not alter memory T cell recall at lower doses whereas toxicity observed at high dose favors antigen-specific memory T cell survival/proliferation over non-specific CD8+ T cells. Conversely, parent nucleoside GS-441524 at high dosage does not result in cellular toxicity and reduces antigen-specific T cell recall in most donors. Despite similar chemical structure, these drugs displayed opposing effects on memory T cell expansion and viability highlighting the sensitivity of this assay setup in screening compounds for off-target effects.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Adenosine/analogs & derivatives , Adenosine/pharmacology , Alanine/analogs & derivatives , Immunologic Memory/drug effects , T-Lymphocytes/drug effects , Adenosine Monophosphate/pharmacology , Alanine/pharmacology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cell Proliferation/drug effects , Humans , Immunologic Memory/immunology , T-Lymphocytes/immunology
2.
J Immunol ; 198(10): 4166-4177, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28396317

ABSTRACT

Myeloid cells play a key role in tumor progression and metastasis by providing nourishment and immune protection, as well as facilitating cancer invasion and seeding to distal sites. Although advances have been made in understanding the biology of these tumor-educated myeloid cells (TEMCs), their intrinsic plasticity challenges our further understanding of their biology. Indeed, in vitro experiments only mimic the in vivo setting, and current gene-knockout technologies do not allow the simultaneous, temporally controlled, and cell-specific silencing of multiple genes or pathways. In this article, we describe the 4PD nanoplatform, which allows the in vivo preferential transfection and in vivo tracking of TEMCs with the desired RNAs. This platform is based on the conjugation of CD124/IL-4Rα-targeting peptide with G5 PAMAM dendrimers as the loading surface and can convey therapeutic or experimental RNAs of interest. When injected i.v. in mice bearing CT26 colon carcinoma or B16 melanoma, the 4PD nanoparticles predominantly accumulate at the tumor site, transfecting intratumoral myeloid cells. The use of 4PD to deliver a combination of STAT3- and C/EBPß-specific short hairpin RNA or miR-142-3p confirmed the importance of these genes and microRNAs in TEMC biology and indicates that silencing of both genes is necessary to increase the efficacy of immune interventions. Thus, the 4PD nanoparticle can rapidly and cost effectively modulate and assess the in vivo function of microRNAs and mRNAs in TEMCs.


Subject(s)
Dendrimers/metabolism , Gene Silencing , Myeloid Cells/metabolism , Nanotechnology/methods , Animals , Cell Line, Tumor , Colonic Neoplasms , Dendrimers/administration & dosage , Interleukin-4 Receptor alpha Subunit/immunology , Interleukin-4 Receptor alpha Subunit/metabolism , Melanoma, Experimental , Mice , MicroRNAs , Myeloid Cells/immunology , Nanoparticles/administration & dosage , Nanoparticles/metabolism , Nanotechnology/standards , Receptors, Interleukin-4/immunology , Receptors, Interleukin-4/metabolism
3.
J Infect Dis ; 208(11): 1914-22, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-23901083

ABSTRACT

BACKGROUND: Amphotericin B (AmB), the most effective drug against leishmaniasis, has serious toxicity. As Leishmania species are obligate intracellular parasites of antigen presenting cells (APC), an immunopotentiating APC-specific AmB nanocarrier would be ideally suited to reduce the drug dosage and regimen requirements in leishmaniasis treatment. Here, we report a nanocarrier that results in effective treatment shortening of cutaneous leishmaniasis in a mouse model, while also enhancing L. major specific T-cell immune responses in the infected host. METHODS: We used a Pan-DR-binding epitope (PADRE)-derivatized-dendrimer (PDD), complexed with liposomal amphotericin B (LAmB) in an L. major mouse model and analyzed the therapeutic efficacy of low-dose PDD/LAmB vs full dose LAmB. RESULTS: PDD was shown to escort LAmB to APCs in vivo, enhanced the drug efficacy by 83% and drug APC targeting by 10-fold and significantly reduced parasite burden and toxicity. Fortuitously, the PDD immunopotentiating effect significantly enhanced parasite-specific T-cell responses in immunocompetent infected mice. CONCLUSIONS: PDD reduced the effective dose and toxicity of LAmB and resulted in elicitation of strong parasite specific T-cell responses. A reduced effective therapeutic dose was achieved by selective LAmB delivery to APC, bypassing bystander cells, reducing toxicity and inducing antiparasite immunity.


Subject(s)
Amphotericin B/administration & dosage , Antiprotozoal Agents/administration & dosage , Dendrimers/administration & dosage , Leishmania major/drug effects , Leishmaniasis, Cutaneous/drug therapy , Malaria Vaccines/administration & dosage , Adaptive Immunity , Amphotericin B/toxicity , Animals , Antigen-Presenting Cells/immunology , Antiprotozoal Agents/toxicity , Disease Models, Animal , Drug Carriers , Epitopes , Female , Injections, Intraperitoneal , Leishmania major/immunology , Leishmaniasis Vaccines , Leishmaniasis, Cutaneous/immunology , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Microscopy, Electron, Transmission , Nanoparticles
4.
J Transl Med ; 5: 26, 2007 Jun 07.
Article in English | MEDLINE | ID: mdl-17555571

ABSTRACT

The incidence of cancer increases significantly in later life, yet few pre-clinical studies of cancer immunotherapy use mice of advanced age. A novel vaccine delivery platform (VacciMax,VM) is described that encapsulates antigens and adjuvants in multilamellar liposomes in a water-in-oil emulsion. The therapeutic potential of VM-based vaccines administered as a single dose was tested in HLA-A2 transgenic mice of advanced age (48-58 weeks old) bearing large palpable TC1/A2 tumors. The VM-based vaccines contained one or more peptides having human CTL epitopes derived from HPV 16 E6 and E7. VM formulations contained a single peptide, a mixture of four peptides or the same four peptides linked together in a single long peptide. All VM formulations contained PADRE and CpG as adjuvants and ISA51 as the hydrophobic component of the water-in-oil emulsion. VM-formulated vaccines containing the four peptides as a mixture or linked together in one long peptide eradicated 19-day old established tumors within 21 days of immunization. Peptide-specific cytotoxic cellular responses were confirmed by ELISPOT and intracellular staining for IFN-gamma producing CD8+ T cells. Mice rendered tumor-free by vaccination were re-challenged in the opposite flank with 10 million HLF-16 tumor cells, another HLA-A2/E6/E7 expressing tumor cell line. None of these mice developed tumors following the re-challenge. In summary, this report describes a VM-formulated therapeutic vaccine with the following unprecedented outcome: a) eradication of large tumors (> 700 mm3) b) in mice of advanced age c) in less than three weeks post-immunization d) following a single vaccination.


Subject(s)
Human papillomavirus 16/immunology , Immunization/instrumentation , Neoplasms/immunology , Neoplasms/pathology , Peptides/immunology , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Helper-Inducer/immunology , Aging/immunology , Aging/pathology , Animals , Cancer Vaccines/immunology , Cell Line, Tumor , Cytokines/metabolism , Humans , Interferon-gamma/metabolism , Intracellular Space/metabolism , Mice , Spleen/cytology , Staining and Labeling
SELECTION OF CITATIONS
SEARCH DETAIL
...