Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Cureus ; 16(5): e61367, 2024 May.
Article in English | MEDLINE | ID: mdl-38947666

ABSTRACT

Thoracic SMARCA4-deficient undifferentiated tumor (SMARCA4-UT) is a recently described rare and aggressive malignancy characterized by undifferentiated cell morphology and the loss of the Brahma-related gene 1 (BRG1) protein. Its pathogenesis involves mutational loss of SMARCA4 gene expression, which encodes the BRG1 protein that serves as one of the catalytic subunits of the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex. This malignancy of the thorax predominantly affects middle-aged male smokers and commonly metastasizes to lymph nodes, bones, adrenal glands, liver, gastrointestinal tract, central nervous system, and kidney. Cases of brain metastasis have been reported but are less common. We report a case of this tumor initially presenting with diffuse brain metastasis in a 55-year-old male with a significant smoking history. We reviewed the current literature on the diagnostic and therapeutic challenges posed by this highly aggressive thoracic tumor.

2.
Article in English | MEDLINE | ID: mdl-35300074

ABSTRACT

Background: Basic fibroblast growth factor (bFGF)-mediated vascular smooth muscle cell (VSMC) proliferation and migration play an important role in vascular injury-induced neointima formation and subsequent vascular restenosis, a major event that hinders the long-term success of angioplasty. The function of ß3-adrenergic receptors (ß3-ARs) in vascular injury-induced neointima formation has not yet been defined. Objectives: Our current study explored the possible role of ß3-ARs in vascular injury-induced neointima formation by testing its effects on bFGF-induced VSMC migration and proliferation. Methods: ß3-AR expression in rat carotid arteries was examined at 14 days following a balloon catheter-induced injury. The effects of ß3-AR activation on bFGF-induced rat aortic smooth muscle cell proliferation, migration, and signaling transduction (including extracellular-signal-regulated kinase/mitogen activated protein kinase, ERK/MAPK and Protein kinase B, AKT) were tested. Results: We found that vascular injury induced upregulation of ß3-ARs in neointima. Pretreatment of VSMCs with a selective ß3-AR agonist, CL316,243 significantly potentiated bFGF-induced cell migration and proliferation, and ERK and AKT phosphorylation. Our results also revealed that suppressing phosphorylation of ERK and AKT blocked bFGF-induced cell migration and that inhibiting AKT phosphorylation reduced bFGF-mediated cell proliferation. Conclusion: Our results suggest that activation of ß3-ARs potentiates bFGF-mediated effects on VSMCs by enhancing bFGF-mediated ERK and AKT phosphorylation and that ß3-ARs may play a role in vascular injury-induced neointima formation.

SELECTION OF CITATIONS
SEARCH DETAIL