Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 140(5): 054306, 2014 Feb 07.
Article in English | MEDLINE | ID: mdl-24511939

ABSTRACT

Quantum beat spectroscopy has been used to measure rate coefficients at 300 K for collisional depolarization for NO(A (2)Σ(+)) and OH(A (2)Σ(+)) with krypton. Elastic depolarization rate coefficients have also been determined for OH(A) + Kr, and shown to make a much more significant contribution to the total depolarization rate than for NO(A) + Kr. While the experimental data for NO(A) + Kr are in excellent agreement with single surface quasiclassical trajectory (QCT) calculations carried out on the upper 2A(') potential energy surface, the equivalent QCT and quantum mechanical calculations cannot account for the experimental results for OH(A) + Kr collisions, particularly at low N. This disagreement is due to the presence of competing electronic quenching at low N, which requires a multi-surface, non-adiabatic treatment. Somewhat improved agreement with experiment is obtained by means of trajectory surface hopping calculations that include non-adiabatic coupling between the ground 1A(') and excited 2A(') states of OH(X/A) + Kr, although the theoretical depolarization cross sections still significantly overestimate those obtained experimentally.

2.
J Chem Phys ; 139(12): 124304, 2013 Sep 28.
Article in English | MEDLINE | ID: mdl-24089764

ABSTRACT

We report the first systematic experimental and theoretical study of the state-to-state transfer of rotational angular momentum orientation in a (2)Π-rare gas system. CN(X(2)Σ(+)) was produced by pulsed 266 nm photolysis of ICN in a thermal bath (296 K) of Ar collider gas. A pulsed circularly polarized tunable dye laser prepared CN(A(2)Π, v = 4) in two fully state-selected initial levels, j = 6.5 F1e and j = 10.5 F2f, with a known laboratory-frame orientation. Both the prepared levels and a range of product levels, j' F1e and j' F2f, were monitored using the circular polarized output of a tunable diode laser via cw frequency-modulated (FM) spectroscopy in stimulated emission on the CN(A-X) (4,2) band. The FM Doppler lineshapes for co-rotating and counter-rotating pump-and-probe geometries reveal the time-dependence of the populations and orientations. Kinetic fitting was used to extract the state-to-state population transfer rate constants and orientation multipole transfer efficiencies (MTEs), which quantify the degree of conservation of initially prepared orientation in the product level. Complementary full quantum scattering (QS) calculations were carried out on recently computed ab initio potential energy surfaces. Collision-energy-dependent tensor cross sections for ranks K = 0 and 1 were computed for transitions from both initial levels to all final levels. These quantities were integrated over the thermal collision energy distribution to yield predictions of the experimentally observed state-to-state population transfer rate constants and MTEs. Excellent agreement between experiment and theory is observed for both measured quantities. Dramatic oscillations in the MTEs are observed, up to and including changes in the sign of the orientation, as a function of even/odd Δj within a particular spin-orbit and e/f manifold. These oscillations, along with those also observed in the state-to-state rate constants, reflect the rotational parity of the final level. In general, parity-conserving collisions conserve rotational orientation, while parity-changing collisions result in large changes in the orientation. The QS calculations show that the dynamics of the collisions leading to these different outcomes are fundamentally different. We propose that the origin of this behavior lies in interferences between collisions that sample the even and odd-λ terms in the angular expansions of the PESs.

3.
J Chem Phys ; 136(16): 164306, 2012 Apr 28.
Article in English | MEDLINE | ID: mdl-22559481

ABSTRACT

Angular momentum depolarization and population transfer in CN(A(2)Π, v = 4, j, F(1)e) + Ar collisions have been investigated both experimentally and theoretically. Ground-state CN(X(2)Σ(+)) molecules were generated by pulsed 266-nm laser photolysis of ICN in a thermal (nominally 298 K) bath of the Ar collision partner at a range of pressures. The translationally thermalized CN(X) radicals were optically pumped to selected unique CN(A(2)Π, v = 4, j = 2.5, 3.5, 6.5, 11.5, 13.5, and 18.5, F(1)e) levels on the A-X (4,0) band by a pulsed tunable dye laser. The prepared level was monitored in a collinear geometry by cw frequency-modulated (FM) spectroscopy in stimulated emission on the CN(A-X) (4,2) band. The FM lineshapes for co- and counter-rotating circular pump and probe polarizations were analyzed to extract the time dependence of the population and (to a good approximation) orientation (tensor rank K = 1 polarization). The corresponding parallel and perpendicular linear polarizations yielded population and alignment (K = 2). The combined population and polarization measurements at each Ar pressure were fitted to a 3-level kinetic model, the minimum complexity necessary to reproduce the qualitative features of the data. Rate constants were extracted for the total loss of population and of elastic depolarization of ranks K = 1 and 2. Elastic depolarization is concluded to be a relatively minor process in this system. Complementary full quantum scattering (QS) calculations were carried out on the best previous and a new set of ab initio potential energy surfaces for CN(A)-Ar. Collision-energy-dependent elastic tensor and depolarization cross sections for ranks K = 1 and 2 were computed for CN(A(2)Π, v = 4, j = 1.5-10.5, F(1)e) rotational/fine-structure levels. In addition, integral cross sections for rotationally inelastic transitions out of these levels were computed and summed to yield total population transfer cross sections. These quantities were integrated over a thermal collision-energy distribution to yield the corresponding rate constants. A complete master-equation simulation using the QS results for the selected initial level j = 6.5 gave close, but not perfect, agreement with the near-exponential experimental population decays, and successfully reproduced the observed multimodal character of the polarization decays. On average, the QS population removal rate constants were consistently 10%-15% higher than those derived from the 3-level fit to the experimental data. The QS and experimental depolarization rate constants agree within the experimental uncertainties at low j, but the QS predictions decline more rapidly with j than the observations. In addition to providing a sensitive test of the achievable level of agreement between state-of-the art experiment and theory, these results highlight the importance of multiple collisions in contributing to phenomenological depolarization using any method sensitive to both polarized and unpolarized molecules in the observed level.

4.
J Chem Phys ; 135(23): 234304, 2011 Dec 21.
Article in English | MEDLINE | ID: mdl-22191872

ABSTRACT

A combined theoretical and experimental study of the depolarization of selected NO(X(2)Π, v = 0, j, F, ɛ) levels in collisions with a thermal bath of Ar has been carried out. Rate constants for elastic depolarization of rank K = 1 (orientation) and K = 2 (alignment) were extracted from collision-energy-dependent quantum scattering calculations, along with those for inelastic population transfer to discrete product levels. The rate constants for total loss of polarization of selected initial levels, which are the sum of elastic depolarization and population transfer contributions, were measured using a two-color polarization spectroscopy technique. Theory and experiment agree qualitatively that the rate constants for total loss of polarization decline modestly with j, but the absolute values differ by significantly more than the statistical uncertainties in the measurements. The reasons for this discrepancy are as yet unclear. The lack of a significant K dependence in the experimental data is, however, consistent with the theoretical prediction that elastic depolarization makes only a modest contribution to the total loss of polarization. This supports a previous conclusion that elastic depolarization for NO(X(2)Π) + Ar is significantly less efficient than for the electronically closely related system OH(X(2)Π) + Ar [P. J. Dagdigian and M. H. Alexander, J. Chem. Phys. 130, 204304 (2009)].

5.
J Chem Phys ; 131(22): 221104, 2009 Dec 14.
Article in English | MEDLINE | ID: mdl-20001016

ABSTRACT

We report extensive, fully quantum, time-independent (TID) calculations of cross sections at low collision energies and rate constants at low temperatures for the O+OH reaction, of key importance in the production of molecular oxygen in cold, dark, interstellar clouds and in the chemistry of the Earth's atmosphere. Our calculations are compared with TID calculations within the J-shifting approximation, with wave-packet calculations, and with quasiclassical trajectory calculations. The fully quantum TID calculations yield rate constants higher than those from the more approximate methods and are qualitatively consistent with a low-temperature extrapolation of earlier experimental values but not with the most recent experiments at the lowest temperatures.

6.
Faraday Discuss ; (118): 387-404; discussion 419-31, 2001.
Article in English | MEDLINE | ID: mdl-11605277

ABSTRACT

The electronic spectra of the Al-H2 and Al-D2 complexes are investigated in a collaborative experimental and theoretical study. The complexes were prepared in a pulsed supersonic beam and detected with laser fluorescence excitation spectroscopy. Transitions to bound vibrational levels in electronic states correlating with the excited-state Al(3d, 4p, 4d) + H2/D2 asymptotes were observed by monitoring emission from lower excited Al atomic levels, formed in the non-radiative decay of the excited complex. Fluorescence depletion has also been used to verify that the observed Al-H2 bands all involve the same molecular carrier. The bands have been assigned to the more strongly bound Al-oH2 and Al-pD2 nuclear spin modifications. In contrast to our previous observations for Al(5s)-H2 [X. Yang and P. J. Dagdigian, J. Chem. Phys., 1998, 109, 8920], for which only one potential energy surface (PES) emanates from the dissociation asymptote, the Lorentzian widths of the different vibrational bands in the 3d, 4p, 4d<--3p transitions vary widely, in some cases allowing resolution of the rotational structure of the bands. With the help of the calculated Al(3p)-oH2/pD2 dissociation energies, binding energies of the observed excited vibronic levels are reported. The mechanism of predissociation is investigated theoretically through ab initio calculation of C2 nu cuts of the excited PESs. It is concluded that predissociation occurs through coupling with the repulsive Al(4s)-H2 PES. With these calculations, a qualitative interpretation of the observed bands could be made.

7.
Annu Rev Phys Chem ; 48: 95-123, 1997.
Article in English | MEDLINE | ID: mdl-15012441

ABSTRACT

Laser and molecular beam techniques have enabled researchers to determine the rovibrational levels populated in collision-induced electronic transitions from specified initial levels of several diatomic molecules. As exemplified by the N2+- and CN-rare-gas systems, such measurements, in combination with theoretical calculations of cross sections for these state-to-state collisional processes, provide a means to understand in detail the dynamics of these electronic quenching and energy transfer processes. The present article reviews state-to-state studies of collision-induced electronic transitions. The various collision systems studied provide examples of both perturbation-assisted "gateways" between the initial and final electronic states and perturbation-independent transitions enabled by nonadiabatic mixing induced by the collision partner.

8.
Science ; 185(4153): 739-47, 1974 Aug 30.
Article in English | MEDLINE | ID: mdl-4843375
SELECTION OF CITATIONS
SEARCH DETAIL
...