Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Alzheimers Dement ; 19 Suppl 9: S49-S63, 2023 11.
Article in English | MEDLINE | ID: mdl-37496307

ABSTRACT

INTRODUCTION: We used sex and apolipoprotein E ε4 (APOE ε4) carrier status as predictors of pathologic burden in early-onset Alzheimer's disease (EOAD). METHODS: We included baseline data from 77 cognitively normal (CN), 230 EOAD, and 70 EO non-Alzheimer's disease (EOnonAD) participants from the Longitudinal Early-Onset Alzheimer's Disease Study (LEADS). We stratified each diagnostic group by males and females, then further subdivided each sex by APOE ε4 carrier status and compared imaging biomarkers in each stratification. Voxel-wise multiple linear regressions yielded statistical brain maps of gray matter density, amyloid, and tau PET burden. RESULTS: EOAD females had greater amyloid and tau PET burdens than males. EOAD female APOE ε4 non-carriers had greater amyloid PET burdens and greater gray matter atrophy than female ε4 carriers. EOnonAD female ε4 non-carriers also had greater gray matter atrophy than female ε4 carriers. DISCUSSION: The effects of sex and APOE ε4 must be considered when studying these populations. HIGHLIGHTS: Novel analysis examining the effects of biological sex and apolipoprotein E ε4 (APOE Îµ4) carrier status on neuroimaging biomarkers among early-onset Alzheimer's disease (EOAD), early-onset non-AD (EOnonAD), and cognitively normal (CN) participants. Female sex is associated with greater pathology burden in the EOAD cohort compared to male sex. The effect of APOE ε4 carrier status on pathology burden was the most impactful in females across all cohorts.


Subject(s)
Alzheimer Disease , Humans , Male , Female , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Apolipoprotein E4/genetics , Neuroimaging , Biomarkers , Amyloidogenic Proteins , Atrophy , Amyloid beta-Peptides
2.
Nat Med ; 27(6): 1034-1042, 2021 06.
Article in English | MEDLINE | ID: mdl-34031605

ABSTRACT

A combination of plasma phospho-tau (P-tau) and other accessible biomarkers might provide accurate prediction about the risk of developing Alzheimer's disease (AD) dementia. We examined this in participants with subjective cognitive decline and mild cognitive impairment from the BioFINDER (n = 340) and Alzheimer's Disease Neuroimaging Initiative (ADNI) (n = 543) studies. Plasma P-tau, plasma Aß42/Aß40, plasma neurofilament light, APOE genotype, brief cognitive tests and an AD-specific magnetic resonance imaging measure were examined using progression to AD as outcome. Within 4 years, plasma P-tau217 predicted AD accurately (area under the curve (AUC) = 0.83) in BioFINDER. Combining plasma P-tau217, memory, executive function and APOE produced higher accuracy (AUC = 0.91, P < 0.001). In ADNI, this model had similar AUC (0.90) using plasma P-tau181 instead of P-tau217. The model was implemented online for prediction of the individual probability of progressing to AD. Within 2 and 6 years, similar models had AUCs of 0.90-0.91 in both cohorts. Using cerebrospinal fluid P-tau, Aß42/Aß40 and neurofilament light instead of plasma biomarkers did not improve the accuracy significantly. The clinical predictions by memory clinic physicians had significantly lower accuracy (4-year AUC = 0.71). In summary, plasma P-tau, in combination with brief cognitive tests and APOE genotyping, might greatly improve the diagnostic prediction of AD and facilitate recruitment for AD trials.


Subject(s)
Alzheimer Disease/blood , Apolipoproteins E/genetics , Cognitive Dysfunction/blood , tau Proteins/blood , Aged , Aged, 80 and over , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Amyloid beta-Peptides/blood , Biomarkers/blood , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/pathology , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Neuroimaging , Neuropsychological Tests , Prognosis , Risk Factors
3.
J Comb Chem ; 11(1): 34-43, 2009.
Article in English | MEDLINE | ID: mdl-19105723

ABSTRACT

For the successful implementation of Distributed Drug Discovery (D(3)) (outlined in the accompanying Perspective), students, in the course of their educational laboratories, must be able to reproducibly make new, high quality, molecules with potential for biological activity. This article reports the successful achievement of this goal. Using previously rehearsed alkylating agents, students in a second semester organic chemistry laboratory performed a solid-phase combinatorial chemistry experiment in which they made 38 new analogs of the most potent member of a class of antimelanoma compounds. All compounds were made in duplicate, purified by silica gel chromatography, and characterized by NMR and LC/MS. As a continuing part of the Distributed Drug Discovery program, a virtual D(3) catalog based on this work was then enumerated and is made freely available to the global scientific community.


Subject(s)
Antineoplastic Agents/chemical synthesis , Biomedical Research/education , Drug Discovery/methods , Melanoma/drug therapy , Laboratories , Universities
4.
J Comb Chem ; 11(1): 14-33, 2009.
Article in English | MEDLINE | ID: mdl-19105725

ABSTRACT

Distributed Drug Discovery (D(3)) proposes solving large drug discovery problems by breaking them into smaller units for processing at multiple sites. A key component of the synthetic and computational stages of D(3) is the global rehearsal of prospective reagents and their subsequent use in the creation of virtual catalogs of molecules accessible by simple, inexpensive combinatorial chemistry. The first section of this article documents the feasibility of the synthetic component of Distributed Drug Discovery. Twenty-four alkylating agents were rehearsed in the United States, Poland, Russia, and Spain, for their utility in the synthesis of resin-bound unnatural amino acids 1, key intermediates in many combinatorial chemistry procedures. This global reagent rehearsal, coupled to virtual library generation, increases the likelihood that any member of that virtual library can be made. It facilitates the realistic integration of worldwide virtual D(3) catalog computational analysis with synthesis. The second part of this article describes the creation of the first virtual D(3) catalog. It reports the enumeration of 24,416 acylated unnatural amino acids 5, assembled from lists of either rehearsed or well-precedented alkylating and acylating reagents, and describes how the resulting catalog can be freely accessed, searched, and downloaded by the scientific community.


Subject(s)
Amino Acids/chemical synthesis , Combinatorial Chemistry Techniques , Drug Discovery/methods , Alkylating Agents , Antineoplastic Agents/chemical synthesis , Drug Discovery/economics , Global Health , Information Dissemination , Internet
SELECTION OF CITATIONS
SEARCH DETAIL
...