Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 175: 113393, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35131560

ABSTRACT

The ongoing reduction in extent and thickness of sea ice in the Arctic might result in an increase of oil spill risk due to the expansion of shipping activity and oil exploration shift towards higher latitudes. This work assessed the response of two oil-in-ice surface drift models implemented in an open-source Lagrangian framework. By considering two numerical modeling experiments, our main finding indicates that the drift models provide fairly similar outputs when forced by the same input. It was also found that using higher resolution ice-ocean model does not imply better results. We highlight the role of sea ice in the spread, direction and distance traveled by the oil. The skill metric seems to be sensitive to the drift location, and drift model re-initialization is required to avoid forecast deterioration and ensure the accurate tracking of oil slicks in real operations.


Subject(s)
Algorithms , Environmental Monitoring , Ice Cover , Models, Theoretical , Oceans and Seas , Petroleum Pollution , Petroleum , Arctic Regions , Ships , Water Movements , Water Pollutants, Chemical
2.
Sci Total Environ ; 790: 148009, 2021 Oct 10.
Article in English | MEDLINE | ID: mdl-34380264

ABSTRACT

Plastic litter is accumulating on pristine northern European beaches, including the European Arctic, and questions remain about the exact origins and sources. Here we investigate plausible fishery and consumer-related sources of beach littering, using a combination of information from expert stakeholder discussions, litter observations and a quantitative tool - a drift model - for forecasting and backtracking likely pathways of pollution. The numerical experiments were co-designed together with practice experts. The drift model itself was forced by operational ocean current, wave and weather forecasts. The model results were compared to a database of marine litter on beaches, collected every year according to the standardized monitoring program of the Oslo/Paris Convention for the Protection of the Marine Environment of the North-East Atlantic (OSPAR). By comparing the heterogeneous beach observations to the model simulations, we are able to highlight probable sources. Two types of plastic are considered in the simulations: floating plastic litter and submerged, buoyant microplastics. We find that the model simulations are plausible in terms of the potential sources and the observed plastic litter. Our analysis results in identifiable sources of plastic waste found on each beach, providing a basis for stakeholder actions.


Subject(s)
Bathing Beaches , Plastics , Environmental Monitoring , Environmental Pollution , Waste Products/analysis
3.
Mar Pollut Bull ; 167: 112285, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33799150

ABSTRACT

Simulations over eight years of continuous surface oil spills around Cuba are carried out to identify the most likely stranding (beaching) locations. The open source Lagrangian oil drift model OpenOil is applied with high resolution hydrodynamic forcing. The actual fraction of the released oil mass reaching different regions is calculated, revealing small differences between a light and a heavy crude oil type. Similar stranding rates for the two oil types are found. Another important conclusion is that, due to the high temporal variability in stranding rates, short term simulations of a few weeks are not suitable to assess environmental risk. The highest stranding rates are simulated in winter in Northern Cuba. It is also found that oil could reach Northern Cuba, Yucatan or Florida in about 3-5 days after a spill.


Subject(s)
Petroleum Pollution , Petroleum , Cuba , Environmental Monitoring , Florida , Hydrodynamics
4.
Mar Pollut Bull ; 127: 484-504, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29475689

ABSTRACT

As oil reserves in established basins become depleted, exploration and production moves towards relatively unexploited areas, such as deep waters off the continental shelf. The Faroe-Shetland Channel (FSC, NE Atlantic) and adjacent areas have been subject to increased focus by the oil industry. In addition to extreme depths, metocean conditions in this region characterise an environment with high waves and strong winds, strong currents, complex circulation patterns, sharp density gradients, and large small- and mesoscale variability. These conditions pose operational challenges to oil spill response and question the suitability of current oil spill modelling frameworks (oil spill models and their forcing data) to adequately simulate the behaviour of a potential oil spill in the area. This article reviews the state of knowledge relevant to deepwater oil spill modelling for the FSC area and identifies knowledge gaps and research priorities. Our analysis should be relevant to other areas of complex oceanography.


Subject(s)
Environmental Monitoring/methods , Models, Theoretical , Oil and Gas Industry , Petroleum Pollution/analysis , Water Pollutants, Chemical/analysis , Atlantic Ocean , Forecasting , Humans , Wind
SELECTION OF CITATIONS
SEARCH DETAIL
...