Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 11(12): 4859-4865, 2020 Jun 18.
Article in English | MEDLINE | ID: mdl-32515198

ABSTRACT

Supercapacitors based on carbon nanomaterials are attracting much attention because of their high capacitance enabled by large specific surface area. The introduction of heteroatoms such as N or O enhances the specific capacitance of these materials. However, the mechanisms that lead to the increase in the specific capacitance are not yet well-studied. In this Letter, we demonstrate an effective method for modification of the surface of carbon nanowalls (CNWs) using DC plasma in atmospheres of O2, N2, and their mixture. Processing in the plasma leads to the incorporation of ∼4 atom % nitrogen and ∼10 atom % oxygen atoms. Electrochemical measurements reveal that CNWs functionalized with oxygen groups are characterized by higher capacitance. The specific capacitance for samples with oxygen reaches 8.9 F cm-3 at a scan rate of 20 mV s-1. In contrast, the nitrogen-doped samples demonstrate a specific capacitance of 4.4 F cm-3 at the same scan rate. The mechanism of heteroatom incorporation into the carbon lattice is explained using density functional theory calculations.

2.
Nanotechnology ; 28(22): 225304, 2017 Jun 02.
Article in English | MEDLINE | ID: mdl-28422045

ABSTRACT

Here we present an original CMOS compatible fabrication method of a single-electron transistor structure with extremely small islands, formed by solitary phosphorus dopants in the silicon nanobridge. Its key feature is the controllable size reduction of the nanobridge in sequential cycles of low energy isotropic reactive ion etching that results in a decreased number of active charge centers (dopants) in the nanobridge from hundreds to a single one. Electron transport through the individual phosphorous dopants in the silicon lattice was studied. The final transistor structure demonstrates a Coulomb blockade voltage of ∼30 mV and nanobridge size estimated as [Formula: see text]. Analysis of current stability diagrams shows that electron transport in samples after the final etching stage had a single-electron nature and was carried through three phosphorus atoms. The fabrication method of the demonstrated structure allows it to be modified further by various impurities in additional etching and implantation cycles.

3.
Phys Chem Chem Phys ; 18(17): 12344-9, 2016 04 28.
Article in English | MEDLINE | ID: mdl-27086716

ABSTRACT

We observed that thermally treated carbon nanowalls serve efficiently as templates governing the formation of quasiperiodic patterns for nanoparticles deposited. Here we report self-assembled quasi-regular structures of diverse nanoparticles on a freestanding multilayer graphene-like material, i.e. carbon nanowalls. Metallic (Ag, Al, Co, Mo, Ni, and Ta) and semiconductor (Si) nanoparticles form coaxial polygonal closed loop structures or parallel equidistant rows, which evolve upon further deposition into bead-like structures and, finally, into nanowires. Weakly bonded nanoparticles decorate atomic steps, wrinkles and other extended defects on the carbon nanowalls as a result of anisotropic diffusion of atoms or clusters along the hexagonal sp(2)-carbon network followed by their aggregation and agglomeration. The decorated carbon nanowalls are found to be promising materials for surface enhanced Raman scattering (SERS) analysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...