Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Publication year range
1.
J Photochem Photobiol B ; 224: 112324, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34619435

ABSTRACT

Visible light has long been recognized as a treatment for many diseases and an essential component of photo-induced chemotherapy. While previous data proved its inherent cytotoxicity, this study is the first to explore the use of a commercially available, high-intensity white LED light (24.5 mW.cm-2) as a treatment for skin tumors. After a 9-h exposure in vitro, the viability of Human Malignant Melanoma cells (A375) decreased by around 70%. Western blot analysis suggested an apoptotic cell death confirmed by the upregulation of Bax, cleaved PARP/caspase-3/8, cytochrome c, and t-bid. Additionally, cellular ROS accumulation and DNA damage were induced upon irradiation with blue light. When tested on a DMBA/TPA skin carcinogenesis model, a 90-min exposure to white light thrice weekly resulted in a significant decrease in tumor volumes/incidence compared to control and cisplatin groups, and restored normal morphological features, as confirmed by histopathology. Toxicological evaluation of ight-treated animals indicated a 100% survival rate, no skin irritation, no signs of discomfort or changes in body weight/behavior, and no toxicities to vital organs. Although these results must be confirmed by further studies, this research showed that short-exposure by commercially available high-intensity white LED light irradiation may be a promising approach for the treatment of superficial malignancies.


Subject(s)
Light , Phototherapy/methods , Skin Neoplasms/therapy , Animals , Apoptosis/radiation effects , Blotting, Western , Cell Line, Tumor , Female , Humans , Mice , Mice, Inbred BALB C , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Skin Neoplasms/metabolism , Skin Neoplasms/pathology
2.
Chem Biol Interact ; 309: 108703, 2019 Aug 25.
Article in English | MEDLINE | ID: mdl-31194954

ABSTRACT

ß-2-himachalen-6-ol (HC), a major sesquiterpene isolated from the Lebanese wild carrot umbels, was shown to possess remarkable in vitro and in vivo anticancer activities. The present study investigates the anti-metastatic activity of HC post 4T1 breast cancer cells inoculation in a murine model. The effect of HC on 4T1 cell viability was assessed using WST-1 kit, while cell cycle analysis was performed using flow cytometry. Tumor development and metastasis were evaluated by injecting 4T1 cells in the mice mammary gland region followed by either HC or cisplatin treatment. The 6-thioguanine assay was used for the quantification of metastatic cells in the blood. HC treatment caused a dose-dependent decrease in cell viability with IC50 and IC90 values of 7 and 28 µg/mL respectively. Concomitant treatment with cisplatin significantly reduced cell viability when compared to cells treated with cisplatin or HC alone. Flow cytometry revealed a significant increase (p˂0.05) in cell count in the Sub-G1 phase at HC 10 µg/mL, and total DNA fragmentation (p˂0.001) at HC 25 µg/mL. Annexin/PI staining showed early and late apoptotic mode of cell death upon treatment with HC. Histopathological evaluation revealed less incidence of primary and metastatic tumor/inflammation in the HC and cisplatin treated groups. Tumor size and colony-forming units were significantly decreased in the HC treated group. HC treatment induced cell cycle arrest, promoted apoptosis and reduced the incidence of primary and metastatic lesions caused by 4T1 cells. The present findings suggest that HC has an anti-metastatic potential against aggressive types of cancer.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Sesquiterpenes/pharmacology , Animals , Antineoplastic Agents, Phytogenic/therapeutic use , Cell Line, Tumor , Cell Movement/drug effects , Cisplatin/pharmacology , Cisplatin/therapeutic use , DNA Fragmentation/drug effects , Disease Models, Animal , Female , G1 Phase Cell Cycle Checkpoints/drug effects , Lung/pathology , Mice , Mice, Inbred BALB C , Sesquiterpenes/therapeutic use , Skin/pathology , Transplantation, Homologous , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology
3.
Biomed Pharmacother ; 103: 443-452, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29674280

ABSTRACT

ß-2-himachalen-6-ol (HC), a novel sesquiterpene derived from Lebanese wild carrot, was shown to possess a remarkable anticancer activity. The present study investigates the in vitro anticancer activity of HC and its effect on papillomas induced using a DMBA/TPA skin carcinogenesis mouse model. HaCaT-ras II-4 epidermal squamous cell viability was assessed using WST-1 kit. Cell cycle was analyzed by flow cytometry, and pro/anti-apoptotic proteins were measured using western blot. Mice papillomas were induced by DMBA and promoted with TPA for 18 weeks. At week 12, animals were divided into four groups: HC topically treated (5%Top), HC intraperitoneally treated (25 mg/kg; HC25), Cisplatin treated (2.5 mg/kg), and control (DMSO treated). Papilloma yield, volume, histology, and mice weight and liver function were assessed. HC treatment decreased significantly cell survival (IC50 = 7 and IC90 = 40 µg/ml) and increased significantly cells undergoing late apoptosis and necrosis. It also significantly decreased the levels of pro-caspase-3, p53, Bcl-2, p-Erk/Erk and p-Akt/Akt and increased p21 and Bax proteins. Treatment with HC25, HC5%Top or Cisplatin showed a significant decrease in papilloma yield and volume. Only Cisplatin treatment caused a significant decrease in body weight and increase in serum ALT. In conclusion, ß-2-himachalen-6-ol induced significant tumor shrinkage, an effect partly mediated via promoting apoptosis through inhibition of the MAPK/ERK and PI3K/AKT pathways, with no significant toxicity to laboratory mice.


Subject(s)
Antineoplastic Agents, Phytogenic/therapeutic use , Carcinogenesis/drug effects , Sesquiterpenes/therapeutic use , Skin Neoplasms/chemically induced , Skin Neoplasms/drug therapy , 9,10-Dimethyl-1,2-benzanthracene/toxicity , Animals , Antineoplastic Agents, Phytogenic/pharmacology , Carcinogenesis/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/physiology , Dose-Response Relationship, Drug , Female , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/physiology , Mice , Mice, Inbred BALB C , Sesquiterpenes/pharmacology , Skin Neoplasms/metabolism , Treatment Outcome
4.
Chem Biol Interact ; 275: 162-170, 2017 Sep 25.
Article in English | MEDLINE | ID: mdl-28782499

ABSTRACT

Previous studies in our laboratory showed that Daucus carota oil extract (DCOE) possesses in vitro and in vivo anticancer activities. Chemical analysis of DCOE led to the isolation of ß-2-himachalen-6-ol (HC) which exhibited potent anticancer activity against colon, breast, brain and skin cancer cells. The present study investigates the anticancer activity of HC against SW1116 colon cancer cell lines, and evaluates its effect in a 1,2-dimethylhydrazine (DMH) colon carcinogenesis black6 mice model. The SW1116 colon cancer cell line was treated with HC (1, 5, 10 and 25 µg/ml) and cell viability was evaluated with WST 1 assay kit. Cell cycle analysis was carried out by flow cytometry, and pro/anti-apoptotic proteins were measured using western blot. The effect of intraperitoneal (IP) treatment with HC (10, 25 and 50 µg/ml) in mice was assessed using the DMH colon carcinogenesis model with Cisplatin (2.5 µg/kg; IP) as a positive control. Blood samples were collected for assessment of liver toxicity and colon tumor incidence and size were studied histologically. HC showed a dose-dependent decrease in cell survival with an IC50 of 18 and 14.5 µg/ml after 24 and 48 h respectively. Flow cytometry analysis revealed that 10 µg/ml HC increased the number of cells undergoing necrosis (18.05%) and late apoptosis (15.66%). At HC 25 µg/ml more cells shifted toward necrosis (58.01%) and late apoptosis (30.47%). Western blot analysis revealed a significant decrease in p-Erk, p-Akt, pro-caspase-3 and Bcl-2 and an increase in p53, p21, Bax and PARP proteins. Mice treatment (IP) with HC caused a significant decrease in tumor incidence and size. Similar effects were observed with cisplatin treatment. In conclusion, HC treatment (low dose) induced cell cycle arrest and promoted apoptosis via inhibition of the MAPK/ERK and PI3K/AKT pathways. HC treatment also had antitumor effect in vivo with no significant toxicity to laboratory mice.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Phosphoinositide-3 Kinase Inhibitors , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Sesquiterpenes/toxicity , Signal Transduction/drug effects , 1,2-Dimethylhydrazine , Animals , Antineoplastic Agents, Phytogenic/therapeutic use , Apoptosis Regulatory Proteins/metabolism , Caspase 3/metabolism , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Colonic Neoplasms/chemically induced , Colonic Neoplasms/drug therapy , Colonic Neoplasms/enzymology , Colonic Neoplasms/pathology , Daucus carota/chemistry , Daucus carota/metabolism , Enzyme Activation/drug effects , Humans , Kidney/drug effects , Kidney/metabolism , Kidney/pathology , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Mice , Phosphatidylinositol 3-Kinases/metabolism , Plant Extracts/chemistry , Plant Extracts/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Sesquiterpenes/chemistry , Sesquiterpenes/therapeutic use
5.
MethodsX ; 1: 90-5, 2014.
Article in English | MEDLINE | ID: mdl-26150940

ABSTRACT

Protein detection methods in formalin-fixed paraffin embedded (FFPE) tissue blocks are widely used in research and clinical setting in order to diagnose or to confirm a diagnosis of various types of diseases. Therefore, multiple protein extraction methods from FFPE tissue sections have been developed in this regard. However, the yield and the quality of proteins extracted from FFPE tissues are significantly reduced in blocks stored for longer periods of time. Regardless the protein extraction method used, tissue sections must be first deparaffinized with xylene, and then washed in serial dilutions of ethanol in order to remove the toxic organic solvent "xylene" and rehydrate the tissue. The objective of this study was first to develop a method to deparaffinize FFPE blocks that excludes the use of toxic solvent "xylene". Second minimize the time required to perform the extraction. Here we describe a method where:•The entire paraffin embedded blocks are deparaffinized and rehydrated using only hot distilled water as a substitute for both xylene and ethanol•The entire procedure takes about 15 min•Deparaffinized blocks are immediately homogenized in lysis buffer, and the obtained lysate analyzed by Western blot. With this new modified technique, we were able to successfully detect actin and AKT proteins in lysates from blocks embedded in paraffin for up to 9 years.

SELECTION OF CITATIONS
SEARCH DETAIL
...