Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Leukemia ; 37(6): 1287-1297, 2023 06.
Article in English | MEDLINE | ID: mdl-37100881

ABSTRACT

Heterozygous mutation targeting proline 95 in Serine/Arginine-rich Splicing Factor 2 (SRSF2) is associated with V617F mutation in Janus Activated Kinase 2 (JAK2) in some myeloproliferative neoplasms (MPNs), most commonly primary myelofibrosis. To explore the interaction of Srsf2P95H with Jak2V617F, we generated Cre-inducible knock-in mice expressing these mutants under control of the stem cell leukemia (Scl) gene promoter. In transplantation experiments, Srsf2P95H unexpectedly delayed myelofibrosis induced by Jak2V617F and decreased TGFß1 serum level. Srsf2P95H reduced the competitiveness of transplanted Jak2V617F hematopoietic stem cells while preventing their exhaustion. RNA sequencing of sorted megakaryocytes identified an increased number of splicing events when the two mutations were combined. Focusing on JAK/STAT pathway, Jak2 exon 14 skipping was promoted by Srsf2P95H, an event detected in patients with JAK2V617F and SRSF2P95 co-mutation. The skipping event generates a truncated inactive JAK2 protein. Accordingly, Srsf2P95H delays myelofibrosis induced by the thrombopoietin receptor agonist Romiplostim in Jak2 wild-type animals. These results unveil JAK2 exon 14 skipping promotion as a strategy to reduce JAK/STAT signaling in pathological conditions.


Subject(s)
Hematopoietic Stem Cell Transplantation , Myeloproliferative Disorders , Primary Myelofibrosis , Animals , Mice , Janus Kinase 2/genetics , Janus Kinases/genetics , Mutation , Myeloproliferative Disorders/genetics , Primary Myelofibrosis/genetics , RNA-Binding Proteins/genetics , Signal Transduction , STAT Transcription Factors/genetics
2.
Int Rev Cell Mol Biol ; 366: 125-185, 2022.
Article in English | MEDLINE | ID: mdl-35153003

ABSTRACT

Over the past decades, a variety of MPN mouse models have been developed to express in HSC the main mutations identified in patients: JAK2V617F, CALRdel52 or ins5 and MPLW515L. These models mimic quite faithfully human PV or ET with their natural evolutions into MF and their hemostasis complications, demonstrating the driver function of these mutations in MPN. Here, we review these models and show how they have improved our general understanding of MPN regarding (1) the mechanisms of fibrosis, thrombosis/hemorrhages and disease initiation, (2) the roles of additional mutations and signaling pathways in disease progression and (3) the preclinical development of novel therapies. We also address controversial results between these models and remind how these models may differ from human MPN onset and also how basically mice are not humans, encouraging caution when one draw lessons from mice to humans. Furthermore, the contribution of germline genetic predisposition, HSC and niche aging, metabolic, oxidative, replicative or genotoxic stress, inflammation, immune escape and additional mutations need to be considered in further investigations to encompass the full complexity of human MPN in mice.


Subject(s)
Thrombocythemia, Essential , Animals , Disease Models, Animal , Disease Progression , Genetic Predisposition to Disease , Humans , Mice , Mutation , Receptors, Thrombopoietin/genetics , Thrombocythemia, Essential/genetics
3.
Cells ; 11(1)2021 12 24.
Article in English | MEDLINE | ID: mdl-35011611

ABSTRACT

Over 95% of Polycythemia Vera (PV) patients carry the V617F mutation in the tyrosine kinase Janus kinase 2 (JAK2), resulting in uncontrolled erythroid proliferation and a high risk of thrombosis. Using mass spectrometry, we analyzed the RBC membrane proteome and showed elevated levels of multiple Ca2+ binding proteins as well as endoplasmic-reticulum-residing proteins in PV RBC membranes compared with RBC membranes from healthy individuals. In this study, we investigated the impact of JAK2V617F on (1) calcium homeostasis and RBC ion channel activity and (2) protein expression and sorting during terminal erythroid differentiation. Our data from automated patch-clamp show modified calcium homeostasis in PV RBCs and cell lines expressing JAK2V617F, with a functional impact on the activity of the Gárdos channel that could contribute to cellular dehydration. We show that JAK2V617F could play a role in organelle retention during the enucleation step of erythroid differentiation, resulting in modified whole cell proteome in reticulocytes and RBCs in PV patients. Given the central role that calcium plays in the regulation of signaling pathways, our study opens new perspectives to exploring the relationship between JAK2V617F, calcium homeostasis, and cellular abnormalities in myeloproliferative neoplasms, including cellular interactions in the bloodstream in relation to thrombotic events.


Subject(s)
Calcium/metabolism , Erythrocytes/metabolism , Erythropoiesis , Homeostasis , Organelles/metabolism , Polycythemia Vera/blood , Polycythemia Vera/metabolism , Animals , Cell Size , Erythroblasts/metabolism , Erythroid Cells/metabolism , Erythroid Cells/pathology , Humans , Intermediate-Conductance Calcium-Activated Potassium Channels/metabolism , Intracellular Space/metabolism , Janus Kinase 2/genetics , Mice, Inbred C57BL , Mutation/genetics , Proteome/metabolism , Reticulocytes/metabolism , Ribosomes/metabolism , Thrombocytosis/blood
4.
J Exp Med ; 218(2)2021 02 01.
Article in English | MEDLINE | ID: mdl-33075130

ABSTRACT

Interferon α (IFNα) is used to treat JAK2V617F-driven myeloproliferative neoplasms (MPNs) but rarely clears the disease. We investigated the IFNα mechanism of action focusing on PML, an interferon target and key senescence gene whose targeting by arsenic trioxide (ATO) drives eradication of acute promyelocytic leukemia. ATO sharply potentiated IFNα-induced growth suppression of JAK2V617F patient or mouse hematopoietic progenitors, which required PML and was associated with features of senescence. In a mouse MPN model, combining ATO with IFNα enhanced and accelerated responses, eradicating MPN in most mice by targeting disease-initiating cells. These results predict potent clinical efficacy of the IFNα+ATO combination in patients and identify PML as a major effector of therapy, even in malignancies with an intact PML gene.


Subject(s)
Arsenic Trioxide/pharmacology , Interferon-alpha/pharmacology , Janus Kinase 2/metabolism , Myeloproliferative Disorders/drug therapy , Promyelocytic Leukemia Protein/metabolism , Animals , Cell Line , Cell Line, Tumor , Disease Models, Animal , Humans , Leukemia, Promyelocytic, Acute/drug therapy , Leukemia, Promyelocytic, Acute/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myeloproliferative Disorders/metabolism
5.
J Clin Invest ; 130(5): 2630-2643, 2020 05 01.
Article in English | MEDLINE | ID: mdl-32045382

ABSTRACT

Arterial cardiovascular events are the leading cause of death in patients with JAK2V617F myeloproliferative neoplasms (MPNs). However, their mechanisms are poorly understood. The high prevalence of myocardial infarction without significant coronary stenosis or atherosclerosis in patients with MPNs suggests that vascular function is altered. The consequences of JAK2V617F mutation on vascular reactivity are unknown. We observe here increased responses to vasoconstrictors in arteries from Jak2V617F mice resulting from a disturbed endothelial NO pathway and increased endothelial oxidative stress. This response was reproduced in WT mice by circulating microvesicles isolated from patients carrying JAK2V617F and by erythrocyte-derived microvesicles from transgenic mice. Microvesicles of other cellular origins had no effect. This effect was observed ex vivo on isolated aortas, but also in vivo on femoral arteries. Proteomic analysis of microvesicles derived from JAK2V617F erythrocytes identified increased expression of myeloperoxidase as the likely mechanism accounting for their effect. Myeloperoxidase inhibition in microvesicles derived from JAK2V617F erythrocytes suppressed their effect on oxidative stress. Antioxidants such as simvastatin and N-acetyl cysteine improved arterial dysfunction in Jak2V617F mice. In conclusion, JAK2V617F MPNs are characterized by exacerbated vasoconstrictor responses resulting from increased endothelial oxidative stress caused by circulating erythrocyte-derived microvesicles. Simvastatin appears to be a promising therapeutic strategy in this setting.


Subject(s)
Erythrocytes/physiology , Gain of Function Mutation , Janus Kinase 2/genetics , Janus Kinase 2/physiology , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/physiopathology , Animals , Antioxidants/pharmacology , Aorta, Thoracic/drug effects , Aorta, Thoracic/physiopathology , Cardiovascular Diseases/etiology , Cardiovascular Diseases/genetics , Cardiovascular Diseases/physiopathology , Cell-Derived Microparticles/physiology , Femoral Artery/drug effects , Femoral Artery/physiopathology , Humans , In Vitro Techniques , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myeloproliferative Disorders/complications , Oxidative Stress , Simvastatin/pharmacology , Vasoconstriction/drug effects , Vasoconstriction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...