Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Virus Evol ; 10(1): veae003, 2024.
Article in English | MEDLINE | ID: mdl-38361818

ABSTRACT

Recent advances in high throughput sequencing (HTS) approaches allowed a broad exploration of viromes from different fungal hosts, unveiling a great diversity of mycoviruses with interesting evolutionary features. The word mycovirus historically applies also to viruses infecting oomycetes but most studies are on viruses infecting fungi, with less mycoviruses found and characterized in oomycetes, particularly in the obligatory biotrophs. We, here, describe the first virome associated to Bremia lactucae, the causal agent of lettuce downy mildew, which is an important biotrophic pathogen for lettuce production and a model system for the molecular aspects of the plant-oomycetes interactions. Among the identified viruses, we could detect (1) two new negative sense ssRNA viruses related to the yueviruses, (2) the first example of permuted RdRp in a virus infecting fungi/oomycetes, (3) a new group of bipartite dsRNA viruses showing evidence of recent bi-segmentation and concomitantly, a possible duplication event bringing a bipartite genome to tripartite, (4) a first representative of a clade of viruses with evidence of recombination between distantly related viruses, (5) a new open reading frame (ORF)an virus encoding for an RdRp with low homology to known RNA viruses, and (6) a new virus, belonging to riboviria but not conserved enough to provide a conclusive phylogenetic placement that shows evidence of a recombination event between a kitrinoviricota-like and a pisuviricota-like sequence. The results obtained show a great diversity of viruses and evolutionary mechanisms previously unreported for oomycetes-infecting viruses, supporting the existence of a large diversity of oomycetes-specific viral clades ancestral of many fungal and insect virus clades.

2.
Nat Commun ; 14(1): 2591, 2023 05 05.
Article in English | MEDLINE | ID: mdl-37147358

ABSTRACT

Earth's life may have originated as self-replicating RNA, and it has been argued that RNA viruses and viroid-like elements are remnants of such pre-cellular RNA world. RNA viruses are defined by linear RNA genomes encoding an RNA-dependent RNA polymerase (RdRp), whereas viroid-like elements consist of small, single-stranded, circular RNA genomes that, in some cases, encode paired self-cleaving ribozymes. Here we show that the number of candidate viroid-like elements occurring in geographically and ecologically diverse niches is much higher than previously thought. We report that, amongst these circular genomes, fungal ambiviruses are viroid-like elements that undergo rolling circle replication and encode their own viral RdRp. Thus, ambiviruses are distinct infectious RNAs showing hybrid features of viroid-like RNAs and viruses. We also detected similar circular RNAs, containing active ribozymes and encoding RdRps, related to mitochondrial-like fungal viruses, highlighting fungi as an evolutionary hub for RNA viruses and viroid-like elements. Our findings point to a deep co-evolutionary history between RNA viruses and subviral elements and offer new perspectives in the origin and evolution of primordial infectious agents, and RNA life.


Subject(s)
RNA Viruses , RNA, Catalytic , Viroids , Viroids/genetics , RNA, Catalytic/genetics , RNA, Viral/genetics , Virus Replication/genetics , RNA/genetics , RNA Viruses/genetics , RNA-Dependent RNA Polymerase/genetics , Fungi/genetics
3.
Sci Rep ; 12(1): 11013, 2022 06 30.
Article in English | MEDLINE | ID: mdl-35773465

ABSTRACT

Plants harbor in their external surfaces and internal tissues a highly diverse and finely structured microbial assembly, the microbiota. Each plant compartment usually represents a unique ecological niche hosting a distinct microbial community and niche differentiation, which may mirror distinct functions of a specialized microbiota, has been mainly investigated for bacteria. Far less is known for the fungal components of the plant-associated microbiota. Here, we applied a metabarcoding approach to describe the fungal assemblages in different organs of Vaccinium myrtillus plants (Ericaceae) collected in a subalpine meadow in North-West Italy, and identified specific taxa enriched in internal tissues of roots, stems, leaves and flowers. We also traced the distribution of some important fungi commonly associated with plants of the family Ericaceae, namely the ericoid mycorrhizal (ErM) fungi and the dark septate endophytes (DSE), both playing important roles in plant growth and health. Operational taxonomic units attributed to established ErM fungal species in the genus Hyaloscypha and to DSE species in the Phialocephala-Acephala applanata complex (PAC) were found in all the plant organs. Mycorrhizal fungi are thought to be strictly associated with the plant roots, and this first observation of ErM fungi in the above-ground organs of the host plant may be explained by the evolutionary closeness of ErM fungi in the genus Hyaloscypha with non mycorrhizal fungal endophytes. This is also witnessed by the closer similarities of the ErM fungal genomes with the genomes of plant endophytes than with those of other mycorrhizal fungi, such as arbuscular or ectomycorrhizal fungi.


Subject(s)
Ericaceae , Fungi/classification , Mycorrhizae , Vaccinium myrtillus/microbiology , DNA Barcoding, Taxonomic , Endophytes/genetics , Fungi/genetics , Fungi/growth & development , Italy , Mycobiome , Mycorrhizae/genetics , Plant Roots/microbiology
4.
Virus Evol ; 8(1): veac038, 2022.
Article in English | MEDLINE | ID: mdl-35615103

ABSTRACT

High throughput sequencing allowed the discovery of many new viruses and viral organizations increasing our comprehension of virus origin and evolution. Most RNA viruses are currently characterized through similarity searches of annotated virus databases. This approach limits the possibility to detect completely new virus-encoded proteins with no detectable similarities to existing ones, i.e. ORFan proteins. A strong indication of the ORFan viral origin in a metatranscriptome is the lack of DNA corresponding to an assembled RNA sequence in the biological sample. Furthermore, sequence homology among ORFans and evidence of co-occurrence of these ORFans in specific host individuals provides further indication of a viral origin. Here, we use this theoretical framework to report the finding of three conserved clades of protein-coding RNA segments without a corresponding DNA in fungi. Protein sequence and structural alignment suggest these proteins are distantly related to viral RNA-dependent RNA polymerases (RdRP). In these new putative viral RdRP clades, no GDD catalytic triad is present, but the most common putative catalytic triad is NDD and a clade with GDQ, a triad previously unreported at that site. SDD, HDD, and ADD are also represented. For most members of these three clades, we were able to associate a second genomic segment, coding for a protein of unknown function. We provisionally named this new group of viruses ormycovirus. Interestingly, all the members of one of these sub-clades (gammaormycovirus) accumulate more minus sense RNA than plus sense RNA during infection.

5.
Virus Evol ; 6(2): veaa076, 2020 Jul.
Article in English | MEDLINE | ID: mdl-33324490

ABSTRACT

Mutualistic plant-associated fungi are recognized as important drivers in plant evolution, diversity, and health. The discovery that mycoviruses can take part and play important roles in symbiotic tripartite interactions has prompted us to study the viromes associated with a collection of ericoid and orchid mycorrhizal (ERM and ORM, respectively) fungi. Our study, based on high-throughput sequencing of transcriptomes (RNAseq) from fungal isolates grown in axenic cultures, revealed in both ERM and ORM fungi the presence of new mycoviruses closely related to already classified virus taxa, but also new viruses that expand the boundaries of characterized RNA virus diversity to previously undescribed evolutionary trajectories. In ERM fungi, we provide first evidence of a bipartite virus, distantly related to narnaviruses, that splits the RNA-dependent RNA polymerase (RdRP) palm domain into two distinct proteins, encoded by each of the two segments. Furthermore, in one isolate of the ORM fungus Tulasnella spp. we detected a 12 kb genomic fragment coding for an RdRP with features of bunyavirus-like RdRPs. However, this 12 kb genomic RNA has the unique features, for Bunyavirales members, of being tri-cistronic and carrying ORFs for the putative RdRP and putative nucleocapsid in ambisense orientation on the same genomic RNA. Finally, a number of ORM fungal isolates harbored a group of ambisense bicistronic viruses with a genomic size of around 5 kb, where we could identify a putative RdRP palm domain that has some features of plus strand RNA viruses; these new viruses may represent a new lineage in the Riboviria, as they could not be reliably assigned to any of the branches in the recently derived monophyletic tree that includes most viruses with an RNA genome.

6.
Front Microbiol ; 11: 341, 2020.
Article in English | MEDLINE | ID: mdl-32210940

ABSTRACT

The success of Ericaceae in stressful habitats enriched in heavy metals has been ascribed to the distinctive abilities of their mycorrhizal fungal partners to withstand heavy metal stress and to enhance metal tolerance in the host plant. Whereas heavy metal tolerance has been extensively investigated in some ericoid mycorrhizal (ERM) fungi, the molecular and cellular mechanisms that extend tolerance to the host plant are currently unknown. Here, we show a reduced Cd content in Cd-exposed mycorrhizal roots of Vaccinium myrtillus colonized by a metal tolerant isolate of the fungus Oidiodendron maius as compared to non-mycorrhizal roots. To better understand this phenotype, we applied Next Generation Sequencing technologies to analyze gene expression in V. myrtillus and O. maius Zn grown under normal and Cd-stressed conditions, in the free living and in the mycorrhizal status. The results clearly showed that Cd had a stronger impact on plant gene expression than symbiosis, whereas fungal gene expression was mainly regulated by symbiosis. The higher abundance of transcripts coding for stress related proteins in non-mycorrhizal roots may be related to the higher Cd content. Regulated plant metal transporters have been identified that may play a role in reducing Cd content in mycorrhizal roots exposed to this metal.

7.
Sci Rep ; 9(1): 6629, 2019 04 29.
Article in English | MEDLINE | ID: mdl-31036870

ABSTRACT

The cysteine-rich PLAC8 domain of unknown function occurs in proteins found in most Eukaryotes. PLAC8-proteins play important yet diverse roles in different organisms, such as control of cell proliferation in animals and plants or heavy metal resistance in plants and fungi. Mammalian Onzin can be either pro-proliferative or pro-apoptotic, depending on the cell type, whereas fungal FCR1 confers cadmium tolerance. Despite their different role in different organisms, we hypothesized common ancestral functions linked to the PLAC8 domain. To address this hypothesis, and to investigate the molecular function of the PLAC8 domain, murine Onzin and fungal FCR1 were expressed in the PLAC8-free yeast Saccharomyces cerevisiae. The two PLAC8-proteins localized in the nucleus and induced almost identical phenotypes and transcriptional changes when exposed to cadmium stress. Like FCR1, Onzin also reduced DNA damage and increased cadmium tolerance by a DUN1-dependent pathway. Both proteins activated transcription of ancient mitochondrial pathways such as leucine and Fe-S cluster biosynthesis, known to regulate cell proliferation and DNA repair in yeast. These results strongly suggest a common ancestral function of PLAC8 proteins and open new perspectives to understand the role of the PLAC8 domain in the cellular biology of Eukaryotes.


Subject(s)
Cadmium/toxicity , Cell Nucleus/drug effects , DNA Damage/drug effects , DNA Repair/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Oncogene Proteins/metabolism , Saccharomyces cerevisiae/drug effects , Animals , Cell Nucleus/metabolism , Cell Proliferation/drug effects , Cell Proliferation/genetics , Cell Survival/drug effects , Cell Survival/genetics , DNA Damage/genetics , DNA Repair/genetics , Mice , Oncogene Proteins/genetics , Proteins/genetics , Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
8.
New Phytol ; 220(4): 1141-1147, 2018 12.
Article in English | MEDLINE | ID: mdl-29851103

ABSTRACT

Contents Summary 1141 I. Introduction 1141 II. The ericoid mycorrhizal lifestyle 1141 III. Lessons from the mycorrhizal fungal genomes 1142 IV. ERM fungi: a discordant voice in the mycorrhizal choir 1143 V. An endophytic niche for ERM fungi 1144 VI. Specialised vs unspecialised mycorrhizal fungi? 1145 VII. Conclusions and perspectives 1145 Acknowledgements 1146 References 1146 SUMMARY: The genome of an organism bears the signature of its lifestyle, and organisms with similar life strategies are expected to share common genomic traits. Indeed, ectomycorrhizal and arbuscular mycorrhizal fungi share some genomic traits, such as the expansion of gene families encoding taxon-specific small secreted proteins, which are candidate effectors in the symbiosis, and a very small repertoire of plant cell wall-degrading enzymes. A large gene family coding for candidate effectors was also revealed in ascomycetous ericoid mycorrhizal (ERM) fungi, but these fungal genomes are characterised by a very high number of genes encoding degradative enzymes, mainly acting on plant cell wall components. We suggest that the genomic signature of ERM fungi mirrors a versatile life strategy, which allows them to occupy several ecological niches.


Subject(s)
Genome, Fungal , Mycorrhizae/genetics , Symbiosis/genetics , Endophytes/physiology , Models, Genetic , Plants/microbiology
9.
Front Plant Sci ; 9: 546, 2018.
Article in English | MEDLINE | ID: mdl-29765384

ABSTRACT

Mutualistic and pathogenic plant-colonizing fungi use effector molecules to manipulate the host cell metabolism to allow plant tissue invasion. Some small secreted proteins (SSPs) have been identified as fungal effectors in both ectomycorrhizal and arbuscular mycorrhizal fungi, but it is currently unknown whether SSPs also play a role as effectors in other mycorrhizal associations. Ericoid mycorrhiza is a specific endomycorrhizal type that involves symbiotic fungi mostly belonging to the Leotiomycetes (Ascomycetes) and plants in the family Ericaceae. Genomic and RNASeq data from the ericoid mycorrhizal fungus Oidiodendron maius led to the identification of several symbiosis-upregulated genes encoding putative SSPs. OmSSP1, the most highly symbiosis up-regulated SSP, was found to share some features with fungal hydrophobins, even though it lacks the Pfam hydrophobin domain. Sequence alignment with other hydrophobins and hydrophobin-like fungal proteins placed OmSSP1 within Class I hydrophobins. However, the predicted features of OmSSP1 may suggest a distinct type of hydrophobin-like proteins. The presence of a predicted signal peptide and a yeast-based signal sequence trap assay demonstrate that OmSSP1 is secreted. OmSSP1 null-mutants showed a reduced capacity to form ericoid mycorrhiza with Vaccinium myrtillus roots, suggesting a role as effectors in the ericoid mycorrhizal interaction.

10.
New Phytol ; 220(4): 1296-1308, 2018 12.
Article in English | MEDLINE | ID: mdl-29424928

ABSTRACT

Several studies have investigated soil microbial biodiversity, but understanding of the mechanisms underlying plant responses to soil microbiota remains in its infancy. Here, we focused on tomato (Solanum lycopersicum), testing the hypothesis that plants grown on native soils display different responses to soil microbiotas. Using transcriptomics, proteomics, and biochemistry, we describe the responses of two tomato genotypes (susceptible or resistant to Fusarium oxysporum f. sp. lycopersici) grown on an artificial growth substrate and two native soils (conducive and suppressive to Fusarium). Native soils affected tomato responses by modulating pathways involved in responses to oxidative stress, phenol biosynthesis, lignin deposition, and innate immunity, particularly in the suppressive soil. In tomato plants grown on steam-disinfected soils, total phenols and lignin decreased significantly. The inoculation of a mycorrhizal fungus partly rescued this response locally and systemically. Plants inoculated with the fungal pathogen showed reduced disease symptoms in the resistant genotype in both soils, but the susceptible genotype was partially protected from the pathogen only when grown on the suppressive soil. The 'state of alert' detected in tomatoes reveals novel mechanisms operating in plants in native soils and the soil microbiota appears to be one of the drivers of these plant responses.


Subject(s)
Microbiota , Soil Microbiology , Soil , Solanum lycopersicum/microbiology , Gene Expression Regulation, Plant , Gene Ontology , Lignin/metabolism , Solanum lycopersicum/genetics , Solanum lycopersicum/immunology , Microbiota/genetics , Models, Biological , Plant Immunity/genetics , Plant Roots/genetics , Plant Roots/microbiology , Propanols/metabolism , Proteome/metabolism , Stress, Physiological/genetics , Transcriptome/genetics
11.
New Phytol ; 217(3): 1213-1229, 2018 02.
Article in English | MEDLINE | ID: mdl-29315638

ABSTRACT

Some soil fungi in the Leotiomycetes form ericoid mycorrhizal (ERM) symbioses with Ericaceae. In the harsh habitats in which they occur, ERM plant survival relies on nutrient mobilization from soil organic matter (SOM) by their fungal partners. The characterization of the fungal genetic machinery underpinning both the symbiotic lifestyle and SOM degradation is needed to understand ERM symbiosis functioning and evolution, and its impact on soil carbon (C) turnover. We sequenced the genomes of the ERM fungi Meliniomyces bicolor, M. variabilis, Oidiodendron maius and Rhizoscyphus ericae, and compared their gene repertoires with those of fungi with different lifestyles (ecto- and orchid mycorrhiza, endophytes, saprotrophs, pathogens). We also identified fungal transcripts induced in symbiosis. The ERM fungal gene contents for polysaccharide-degrading enzymes, lipases, proteases and enzymes involved in secondary metabolism are closer to those of saprotrophs and pathogens than to those of ectomycorrhizal symbionts. The fungal genes most highly upregulated in symbiosis are those coding for fungal and plant cell wall-degrading enzymes (CWDEs), lipases, proteases, transporters and mycorrhiza-induced small secreted proteins (MiSSPs). The ERM fungal gene repertoire reveals a capacity for a dual saprotrophic and biotrophic lifestyle. This may reflect an incomplete transition from saprotrophy to the mycorrhizal habit, or a versatile life strategy similar to fungal endophytes.


Subject(s)
Genomics , Mycorrhizae/genetics , Plants/microbiology , Symbiosis/genetics , Transcriptome/genetics , Conserved Sequence/genetics , Fungi/classification , Fungi/genetics , Gene Expression Regulation, Fungal , Genes, Fungal , Phylogeny , Secondary Metabolism/genetics , Substrate Specificity , Up-Regulation/genetics
12.
PLoS One ; 11(12): e0168236, 2016.
Article in English | MEDLINE | ID: mdl-27973595

ABSTRACT

Plant growth and development can be influenced by mutualistic and non-mutualistic microorganisms. We investigated the ability of the ericoid endomycorrhizal fungus Oidiodendron maius to influence growth and development of the non-host plant Arabidopsis thaliana. Different experimental setups (non-compartmented and compartmented co-culture plates) were used to investigate the influence of both soluble and volatile fungal molecules on the plant phenotype. O. maius promoted growth of A. thaliana in all experimental setups. In addition, a peculiar clumped root phenotype, characterized by shortening of the primary root and by an increase of lateral root length and number, was observed in A. thaliana only in the non-compartmented plates, suggesting that soluble diffusible molecules are responsible for this root morphology. Fungal auxin does not seem to be involved in plant growth promotion and in the clumped root phenotype because co-cultivation with O. maius did not change auxin accumulation in plant tissues, as assessed in plants carrying the DR5::GUS reporter construct. In addition, no correlation between the amount of fungal auxin produced and the plant root phenotype was observed in an O. maius mutant unable to induce the clumped root phenotype in A. thaliana. Addition of active charcoal, a VOC absorbant, in the compartmented plates did not modify plant growth promotion, suggesting that VOCs are not involved in this phenomenon. The low VOCs emission measured for O. maius further corroborated this hypothesis. By contrast, the addition of CO2 traps in the compartmented plates drastically reduced plant growth, suggesting involvement of fungal CO2 in plant growth promotion. Other mycorrhizal fungi, as well as a saprotrophic and a pathogenic fungus, were also tested with the same experimental setups. In the non-compartmented plates, most fungi promoted A. thaliana growth and some could induce the clumped root phenotype. In the compartmented plate experiments, a general induction of plant growth was observed for most other fungi, especially those producing higher biomass, further strengthening the role of a nonspecific mechanism, such as CO2 emission.


Subject(s)
Arabidopsis/growth & development , Arabidopsis/microbiology , Ascomycota/chemistry , Carbon Dioxide/pharmacology , Ascomycota/genetics , Indoleacetic Acids/pharmacology , Mycorrhizae/chemistry , Mycorrhizae/genetics , Phenotype , Plant Roots/growth & development , Plant Roots/microbiology , Symbiosis , Volatile Organic Compounds/pharmacology
13.
Sci Rep ; 6: 25773, 2016 05 10.
Article in English | MEDLINE | ID: mdl-27161395

ABSTRACT

For some truffle species of the Tuber genus, the symbiotic phase is often associated with the presence of an area of scant vegetation, commonly known as the brûlé, around the host tree. Previous metagenomics studies have identified the microorganisms present inside and outside the brûlé of a Tuber melanosporum truffle-ground, but the molecular mechanisms that operate in this ecological niche remain to be clarified. To elucidate the metabolic pathways present in the brûlé, we conducted a metaproteomics analysis on the soil of a characterized truffle-ground and cross-referenced the resulting proteins with a database we constructed, incorporating the metagenomics data for the organisms previously identified in this soil. The soil inside the brûlé contained a larger number of proteins and, surprisingly, more proteins from plants, compared with the soil outside the brûlé. In addition, Fisher's Exact Tests detected more biological processes inside the brûlé; these processes were related to responses to multiple types of stress. Thus, although the brûlé has a reduced diversity of plant and microbial species, the organisms in the brûlé show strong metabolic activity. Also, the combination of metagenomics and metaproteomics provides a powerful tool to reveal soil functioning.


Subject(s)
Ascomycota/physiology , Metagenomics , Proteomics , Soil Microbiology , Stress, Physiological , Fungal Proteins/isolation & purification , Gene Ontology
14.
Mycorrhiza ; 26(6): 609-21, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27075897

ABSTRACT

Transcriptomics and genomics data recently obtained from the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis have offered new opportunities to decipher the contribution of the fungal partner to the establishment of the symbiotic association. The large number of genes which do not show similarity to known proteins witnesses the uniqueness of this group of plant-associated fungi. In this work, we characterize a gene that was called RiPEIP1 (Preferentially Expressed In Planta). Its expression is strongly induced in the intraradical phase, including arbuscules, and follows the expression profile of the Medicago truncatula phosphate transporter MtPT4, a molecular marker of a functional symbiosis. Indeed, mtpt4 mutant plants, which exhibit low mycorrhizal colonization and an accelerated arbuscule turnover, also show a reduced RiPEIP1 mRNA abundance. To further characterize RiPEIP1, in the absence of genetic transformation protocols for AM fungi, we took advantage of two different fungal heterologous systems. When expressed as a GFP fusion in yeast cells, RiPEIP1 localizes in the endomembrane system, in particular to the endoplasmic reticulum, which is consistent with the in silico prediction of four transmembrane domains. We then generated RiPEIP1-expressing strains of the fungus Oidiodendron maius, ericoid endomycorrhizal fungus for which transformation protocols are available. Roots of Vaccinium myrtillus colonized by RiPEIP1-expressing transgenic strains showed a higher mycorrhization level compared to roots colonized by the O. maius wild-type strain, suggesting that RiPEIP1 may regulate the root colonization process.


Subject(s)
Fungal Proteins/metabolism , Gene Expression Regulation, Fungal/physiology , Glomeromycota/metabolism , Medicago truncatula/microbiology , Mycorrhizae/genetics , Mycorrhizae/metabolism , Fungal Proteins/genetics , Glomeromycota/genetics , Green Fluorescent Proteins/metabolism , Plant Roots/microbiology , Yeasts/genetics , Yeasts/metabolism
15.
Mycorrhiza ; 26(4): 263-74, 2016 May.
Article in English | MEDLINE | ID: mdl-26710764

ABSTRACT

Ericoid mycorrhizal plants dominate in harsh environments where nutrient-poor, acidic soil conditions result in a higher availability of potentially toxic metals. Although metal-tolerant plant species and ecotypes are known in the Ericaceae, metal tolerance in these plants has been mainly attributed to their association with ericoid mycorrhizal fungi. The mechanisms underlying plant protection by the fungal symbiont are poorly understood, whereas some insights have been achieved regarding the molecular mechanisms of heavy metal tolerance in the fungal symbiont. This review will briefly introduce the general features of heavy metal tolerance in mycorrhizal fungi and will then focus on the use of "omics" approaches and heterologous expression in model organisms to reveal the molecular bases of fungal response to heavy metals. Functional complementation in Saccharomyces cerevisiae has allowed the identification of several ericoid mycorrhizal fungi genes (i.e., antioxidant enzymes, metal transporters, and DNA damage repair proteins) that may contribute to metal tolerance in a metal-tolerant ericoid Oidiodendron maius isolate. Although a powerful system, the use of the yeast complementation assay to study metal tolerance in mycorrhizal symbioses has limitations. Thus, O. maius has been developed as a model system to study heavy metal tolerance mechanisms in mycorrhizal fungi, thanks to its high metal tolerance, easy handling and in vitro mycorrhization, stable genetic transformation, genomics, transcriptomic and proteomic resources.


Subject(s)
Ericaceae/microbiology , Fungi/physiology , Metals, Heavy/metabolism , Mycorrhizae/physiology , Symbiosis , Ericaceae/physiology , Fungal Proteins/chemistry , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungi/chemistry , Fungi/genetics , Fungi/isolation & purification , Models, Biological , Mycorrhizae/chemistry , Mycorrhizae/genetics , Mycorrhizae/isolation & purification , Proteomics
16.
Fungal Biol ; 118(8): 695-703, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25110132

ABSTRACT

Fungi living in heavy metal polluted soils have evolved different cellular and molecular systems to adapt and survive in these harsh environments. Oidiodendron maius Zn is an ericoid mycorrhizal fungus previously shown to be highly tolerant to zinc thanks to antioxidative enzymes and membrane transporters. A novel gene, OmFCR1, was recently identified from this fungus because it conferred strong cadmium tolerance when expressed in yeast. OmFCR1 codes for a protein belonging to the PLAC8 family and physically interacts in yeast with the mismatch repair system, involved in DNA damage repair. The O. maius Zn genome also contains another gene - named OmFCR2 - that codes for a protein sharing with OmFCR1, the PLAC8 domain and other sequence similarities. In this work, we analyzed gene expression of OmFCR1 and OmFCR2 in the fungus O. maius Zn when exposed to cadmium, the ability of OmFCR2 to confer cadmium tolerance when expressed in yeast, and the growth of OmFCR1-null mutants of O. maius Zn upon cadmium exposure. Although OmFCR2 was also able to confer some cadmium tolerance to yeast, the different expression pattern of these two genes would suggest different roles in O. maius Zn.


Subject(s)
Ascomycota/drug effects , Ascomycota/metabolism , Cadmium/toxicity , Drug Tolerance , Fungal Proteins/metabolism , Gene Expression Profiling , Ascomycota/genetics , Ascomycota/growth & development , Fungal Proteins/genetics
17.
Fungal Genet Biol ; 52: 53-64, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23232015

ABSTRACT

Two full-length cDNAs (OmZnT1 and OmFET) encoding membrane transporters were identified by yeast functional screening in the heavy metal tolerant ericoid mycorrhizal isolate Oidiodendron maius Zn. OmZnT1 belongs to the Zn-Type subfamily of the cation diffusion facilitators, whereas OmFET belongs to the family of iron permeases. Their properties were investigated in yeast by functional complementation of mutants affected in metal uptake and metal tolerance. Heterologous expression of OmZnT1 and OmFET in a Zn-sensitive yeast mutant restored the wild-type phenotype. Additionally, OmZnT1 expression also restored cobalt tolerance in a Co-sensitive mutant. A GFP fusion protein revealed that OmZnT1 was targeted to the endoplasmic reticulum membrane, a result consistent with a function for OmZnT1 in metal sequestration. Similarly to other iron permeases, OmFET-GFP was localized on the plasma membrane. OmFET restored the growth of uptake-defective strains for iron and zinc. Zinc-sensitive yeast mutants expressing OmFET specifically accumulated magnesium, as compared to cells transformed with the empty vector. We suggest that OmFET may counteract zinc toxicity by increasing entry of magnesium into the cell.


Subject(s)
Ascomycota/enzymology , Membrane Transport Proteins/metabolism , Poisoning , Zinc/metabolism , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/metabolism , Gene Expression Regulation, Fungal , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Heavy Metal Poisoning , Iron/metabolism , Membrane Transport Proteins/genetics , Zinc/chemistry
18.
PLoS One ; 7(9): e44233, 2012.
Article in English | MEDLINE | ID: mdl-23028507

ABSTRACT

The physico-chemical properties of serpentine soils lead to strong selection of plant species. Whereas many studies have described the serpentine flora, little information is available on the fungal communities dwelling in these sites. Asbestos minerals, often associated with serpentine rocks, can be weathered by serpentine-isolated fungi, suggesting an adaptation to this substrate. In this study, we have investigated whether serpentine substrates characterized by the presence of rocks with distinct mineral composition could select for different fungal communities. Both fungal isolation and 454 pyrosequencing of amplicons obtained from serpentine samples following direct DNA extraction revealed some fungal taxa shared by the four ophiolitic substrates, but also highlighted several substrate-specific taxa. Bootstrap analysis of 454 OTU abundances indicated weak clustering of fungal assemblages from the different substrates, which did not match substrate classification based on exchangeable macronutrients and metals. Intra-substrate variability, as assessed by DGGE profiles, was similar across the four serpentine substrates, and comparable to inter-substrate variability. These findings indicate the absence of a correlation between the substrate (mineral composition and available cations) and the diversity of the fungal community. Comparison of culture-based and culture-independent methods supports the higher taxonomic precision of the former, as complementation of the better performance of the latter.


Subject(s)
Asbestos, Serpentine/chemistry , Biodiversity , Fungi/classification , Soil Microbiology , DNA, Fungal , DNA, Intergenic , Fungi/genetics , Fungi/isolation & purification , Phylogeny , Sequence Analysis, DNA
19.
FEMS Microbiol Lett ; 318(2): 115-22, 2011 May.
Article in English | MEDLINE | ID: mdl-21362020

ABSTRACT

Characterization of genomic variation among different microbial species, or different strains of the same species, is a field of significant interest with a wide range of potential applications. We have investigated the genomic variation in mycorrhizal fungal genomes through genomic suppressive subtractive hybridization. The comparison was between phylogenetically distant and close truffle species (Tuber spp.), and between isolates of the ericoid mycorrhizal fungus Oidiodendron maius featuring different degrees of metal tolerance. In the interspecies experiment, almost all the sequences that were identified in the Tuber melanosporum genome and absent in Tuber borchii and Tuber indicum corresponded to transposable elements. In the intraspecies comparison, some specific sequences corresponded to regions coding for enzymes, among them a glutathione synthetase known to be involved in metal tolerance. This approach is a quick and rather inexpensive tool to develop molecular markers for mycorrhizal fungi tracking and barcoding, to identify functional genes and to investigate the genome plasticity, adaptation and evolution.


Subject(s)
Ascomycota/genetics , Genome, Fungal , Mycorrhizae/genetics , Nucleic Acid Hybridization/methods , Gene Expression Regulation, Fungal , Molecular Sequence Data
20.
J Proteome Res ; 9(8): 3923-31, 2010 Aug 06.
Article in English | MEDLINE | ID: mdl-20578744

ABSTRACT

Cellular mechanisms of asbestos toxicity rely, at least in part, on the chemical composition of these minerals. Iron ions are directly involved in the accepted mechanism of fiber toxicity because they constitute active centers where release of free radicals and reactive oxygen species takes place. Although no current technology is available for the remediation of asbestos polluted sites, the soil fungus Fusarium oxysporum was found to be very effective in iron extraction from crocidolite asbestos in vitro, and to cause a significant reduction in asbestos surface reactivity and oxidative damage to naked DNA. As little information is available on the molecular mechanisms of the fungus-asbestos interactions, a combined proteomic approach that used 2-DE, shotgun and quantitative iTRAQ proteomics was used to investigate the fungal metabolic activities in the presence of crocidolite, an iron-rich type of asbestos. Although global proteomic analyses did not show significant changes in the protein expression pattern of F. oxysporum when exposed to asbestos fibers, some proteins specifically regulated by asbestos suggest up-regulation of metabolic pathways involved in protection from oxidative stress. When compared with the response to crocidolite observed by other authors in human lung epithelial cells, that unlike fungi can internalize the asbestos fibres, a significant difference was the regulation of the pentose phosphate pathway.


Subject(s)
Asbestos, Crocidolite/toxicity , Fusarium/drug effects , Fusarium/metabolism , Gene Expression Regulation, Fungal/drug effects , Metabolic Networks and Pathways/drug effects , Proteomics/methods , DNA Damage , Electrophoresis, Gel, Two-Dimensional , Iron/metabolism , Mass Spectrometry , Oxidative Stress/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...