Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Immunol ; 206(9): 2206-2220, 2021 05 01.
Article in English | MEDLINE | ID: mdl-33846227

ABSTRACT

Interactions between pattern-recognition receptors shape innate immune responses to pathogens. NOD1 and TLR4 are synergistically interacting receptors playing a pivotal role in the recognition of Gram-negative bacteria. However, mechanisms of their cooperation are poorly understood. It is unclear whether synergy is produced at the level of signaling pathways downstream of NOD1 and TLR4 or at more distal levels such as gene transcription. We analyzed sequential stages of human macrophage activation by a combination of NOD1 and TLR4 agonists (N-acetyl-d-muramyl-l-alanyl-d-isoglutamyl-meso-diaminopimelic acid [M-triDAP] and LPS, respectively). We show that events preceding or not requiring activation of transcription, such as activation of signaling kinases, rapid boost of glycolysis, and most importantly, nuclear translocation of NF-κB, are regulated nonsynergistically. However, at the output of the nucleus, the combination of M-triDAP and LPS synergistically induces expression of a subset of M-triDAP- and LPS-inducible genes, particularly those encoding proinflammatory cytokines (TNF, IL1B, IL6, IL12B, and IL23A). This synergistic response develops between 1 and 4 h of agonist treatment and requires continuous signaling through NOD1. The synergistically regulated genes have a lower basal expression and higher inducibility at 4 h than those regulated nonsynergistically. Both gene subsets include NF-κB-inducible genes. Therefore, activation of the NF-κB pathway does not explain synergistic gene induction, implying involvement of other transcription factors. Inhibition of IKKß or p38 MAPK lowers agonist-induced TNF mRNA expression but does not abolish synergy. Thus, nonsynergistic activation of NOD1- and TLR4-dependent signaling pathways results in the synergistic induction of a proinflammatory transcriptional program.


Subject(s)
Nod1 Signaling Adaptor Protein/immunology , Toll-Like Receptor 4/immunology , Acetylglucosamine/analogs & derivatives , Acetylglucosamine/pharmacology , Cytokines/genetics , Cytokines/immunology , Humans , Lipopolysaccharides/pharmacology , Macrophages , Nod1 Signaling Adaptor Protein/agonists , Signal Transduction/drug effects , Toll-Like Receptor 4/agonists
2.
Vaccines (Basel) ; 8(4)2020 Nov 02.
Article in English | MEDLINE | ID: mdl-33147763

ABSTRACT

BACKGROUND: Influenza prophylaxis with the use of quadrivalent vaccines (QIV) is increasingly being introduced into healthcare practice. METHODS: In total, 32 healthy adults and 6 patients with common variable immunodeficiency (CVID) received adjuvant QIV during 2018-2019 influenza season. Depending on initial antibody titers, healthy volunteers were divided into seronegative (≤1:20) and seropositive (≥1:40). To evaluate immunogenicity hemagglutination inhibition assay was used. RESULTS: All participants completed the study without developing serious post-vaccination reactions. Analysis of antibody titer 3 weeks after immunization in healthy participants showed that seroprotection, seroconversion levels, GMR and GMT for strains A/H1N1, A/H3N2 and B/Colorado, B/Phuket among initially seronegative and seropositive participants meet the criterion of CHMP effectiveness. CVID patients showed increase in post-vaccination antibody titer without reaching conditionally protective antibody levels. CONCLUSION: Adjuvant QIV promotes formation of specific immunity to vaccine strains, regardless of antibodies' presence or absence before. In CVID patients search of new regimens should be continued.

3.
J Biol Chem ; 295(10): 3099-3114, 2020 03 06.
Article in English | MEDLINE | ID: mdl-32005665

ABSTRACT

Upon activation with pathogen-associated molecular patterns, metabolism of macrophages and dendritic cells is shifted from oxidative phosphorylation to aerobic glycolysis, which is considered important for proinflammatory cytokine production. Fragments of bacterial peptidoglycan (muramyl peptides) activate innate immune cells through nucleotide-binding oligomerization domain (NOD) 1 and/or NOD2 receptors. Here, we show that NOD1 and NOD2 agonists induce early glycolytic reprogramming of human monocyte-derived macrophages (MDM), which is similar to that induced by the Toll-like receptor 4 (TLR4) agonist lipopolysaccharide. This glycolytic reprogramming depends on Akt kinases, independent of mTOR complex 1 and is efficiently inhibited by 2-deoxy-d-glucose (2-DG) or by glucose starvation. 2-DG inhibits proinflammatory cytokine production by MDM and monocyte-derived dendritic cells activated by NOD1 or TLR4 agonists, except for tumor necrosis factor production by MDM, which is inhibited initially, but augmented 4 h after addition of agonists and later. However, 2-DG exerts these effects by inducing unfolded protein response rather than by inhibiting glycolysis. By contrast, glucose starvation does not cause unfolded protein response and, in normoxic conditions, only marginally affects proinflammatory cytokine production triggered through NOD1 or TLR4. In hypoxia mimicked by treating MDM with oligomycin (a mitochondrial ATP synthase inhibitor), both 2-DG and glucose starvation strongly suppress tumor necrosis factor and interleukin-6 production and compromise cell viability. In summary, the requirement of glycolytic reprogramming for proinflammatory cytokine production in normoxia is not obvious, and effects of 2-DG on cytokine responses should be interpreted cautiously. In hypoxia, however, glycolysis becomes critical for cytokine production and cell survival.


Subject(s)
Cytokines/metabolism , Glycolysis/drug effects , Lipopolysaccharides/pharmacology , Macrophages/metabolism , Nod1 Signaling Adaptor Protein/agonists , Toll-Like Receptor 4/agonists , Animals , Carboxy-Lyases/metabolism , Cell Hypoxia , Dendritic Cells/drug effects , Dendritic Cells/immunology , Dendritic Cells/metabolism , Deoxyglucose/pharmacology , Humans , Macrophages/drug effects , Macrophages/immunology , Mechanistic Target of Rapamycin Complex 1/metabolism , Mice , Mice, Inbred C57BL , Monocytes/cytology , Monocytes/metabolism , Nod1 Signaling Adaptor Protein/metabolism , Nod2 Signaling Adaptor Protein/agonists , Nod2 Signaling Adaptor Protein/metabolism , Oligomycins/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Toll-Like Receptor 4/metabolism , Unfolded Protein Response/drug effects
4.
Int Immunopharmacol ; 63: 94-100, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30077058

ABSTRACT

Agonists of nucleotide oligomerization domain (NOD) 1 and NOD2 receptors represent a promising class of immunostimulants and immunological adjuvants. Here, we describe a cell-based test system to assess their pharmacokinetics. In this system, NOD1 and NOD2 agonist concentrations in sera are determined using a reporter cell line, 293Luc, which contains an NF-κB-inducible luciferase reporter construct and naturally expresses NOD1 and NOD2. The 293Luc cells dose-dependently respond to different NOD1 and NOD2 agonists in the nanomolar to low-micromolar concentration range. To verify that the NF-κB-inducing activity of serum samples is due to the administered agonist and not to secondarily induced endogenous molecules, a 293Luc-derived NOD1/NOD2 double-knockout clone is used. Within-run and between-run precisions of the system are <15% and <20%, respectively. Applicability of the novel assay is illustrated by studying pharmacokinetics of two specific NOD2 agonists (N­acetyl­d­glucosaminyl­N­acetyl­d­muramyl­l­alanyl­d­isoglutamine and N­glycolyl­d­muramyl­l­alanyl­d­isoglutamine) and a specific NOD1 agonist (N­acetyl­d­glucosaminyl­N­acetyl­d­sorbitolamine­d­lactoyl­l­alanyl­d­isoglutamyl­meso­diaminopimelic acid). In summary, the test system described here can potentially be used to assess pharmacokinetics of NOD1 and NOD2 agonists in different animal species.


Subject(s)
Biological Assay , Glutamine/analogs & derivatives , Glutamine/pharmacokinetics , Nod1 Signaling Adaptor Protein/agonists , Nod2 Signaling Adaptor Protein/agonists , Animals , Cell Line , Humans , Male , Rabbits
5.
Int Immunopharmacol ; 54: 385-400, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29207344

ABSTRACT

Nucleotide-binding oligomerization domain (NOD) 1 and NOD2 are pattern-recognition receptors responsible for sensing fragments of bacterial peptidoglycan known as muropeptides. Stimulation of innate immunity by systemic or local administration of NOD1 and NOD2 agonists is an attractive means to prevent and treat infectious diseases. In this review, we discuss novel data concerning structural features of selective and non-selective (dual) NOD1 and NOD2 agonists, main signaling pathways and biological effects induced by NOD1 and NOD2 stimulation, including induction of pro-inflammatory cytokines, type I interferons and antimicrobial peptides, induction of autophagy, alterations of metabolism. We also discuss interactions between NOD1/NOD2 and Toll-like receptor agonists in terms of synergy and cross-tolerance. Finally, we review available animal data on the role of NOD1 and NOD2 in protection against infections, and discuss how these data could be applied in human infectious diseases.


Subject(s)
Communicable Diseases/drug therapy , Nod1 Signaling Adaptor Protein/metabolism , Nod2 Signaling Adaptor Protein/metabolism , Receptors, Pattern Recognition/metabolism , Animals , Humans , Immunity, Innate , Molecular Targeted Therapy , Peptidoglycan/immunology , Receptor Cross-Talk
6.
J Immunol ; 198(4): 1638-1648, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28087669

ABSTRACT

Activation of nucleotide-binding oligomerization domain (NOD) 1 and NOD2 by muropeptides triggers a complex transcriptional program in innate immune cells. However, little is known about posttranscriptional regulation of NOD1- and NOD2-dependent responses. When stimulated with a prototypic NOD1 agonist, N-acetylglucosaminyl-N-acetylmuramyl-l-alanyl-d-isoglutamyl-meso-diaminopimelic acid (GM-triDAP), human monocyte-derived macrophages (MDM) produced an order of magnitude more TNF, IL-6, and pro-IL-1ß than did monocyte-derived dendritic cells (MDDC), despite similar NOD1 expression, similar cytokine mRNA kinetics, and comparable responses to LPS. TNF production by GM-triDAP-activated MDM was independent of autocrine IL-1. However, GM-triDAP-activated MDM translated TNF mRNA more efficiently than did MDDC. As an underlying mechanism, NOD1 triggering in MDM caused a more potent and long-lasting activation of the signaling axis involving p38 MAPK, MAPK-interacting kinase (MNK), and eukaryotic translation initiation factor 4E, which is a critical regulator of translation. Furthermore, MNK controlled TNF mRNA abundance in MDDC and MDM upon NOD1 triggering. NOD1-dependent responses were more sensitive to MNK inhibition than were TLR4-dependent responses. These results demonstrate the importance of the p38-MNK-eukaryotic translation initiation factor 4E axis in TNF production downstream of NOD1.


Subject(s)
Adenosine Triphosphatases/metabolism , Cation Transport Proteins/metabolism , Eukaryotic Initiation Factor-4E/metabolism , Gene Expression Regulation , Nod1 Signaling Adaptor Protein/metabolism , Signal Transduction , p38 Mitogen-Activated Protein Kinases/metabolism , Adenosine Triphosphatases/immunology , Cation Transport Proteins/immunology , Cells, Cultured , Copper-Transporting ATPases , Cytokines/biosynthesis , Cytokines/immunology , Dendritic Cells/drug effects , Dendritic Cells/immunology , Diaminopimelic Acid/pharmacology , Humans , Interleukin-1beta/biosynthesis , Interleukin-1beta/immunology , Interleukin-6/biosynthesis , Interleukin-6/immunology , Macrophages/drug effects , Macrophages/immunology , NF-kappa B/metabolism , Signal Transduction/drug effects , Toll-Like Receptor 4/immunology , Tumor Necrosis Factor-alpha/biosynthesis , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
7.
PLoS One ; 11(8): e0160784, 2016.
Article in English | MEDLINE | ID: mdl-27513337

ABSTRACT

Muropeptides are fragments of peptidoglycan that trigger innate immune responses by activating nucleotide-binding oligomerization domain (NOD) 1 and NOD2. Muropeptides from Gram-negative bacteria contain a meso-diaminopimelic acid (meso-DAP) residue in either a terminal or a non-terminal position. While the former ones are known to be recognized by NOD1, much less is known about recognition of muropeptides with non-terminal meso-DAP, which are most abundant moieties of Gram-negative peptidoglycans. Here, we developed a novel system to assess biological activity of muropeptides, based on CRISPR/Cas9-mediated knockout (KO) of NOD1 and NOD2 genes in modified HEK293T cells. Using NOD1/NOD2 knockout and overexpression systems, as well as human monocytes and macrophages, we refine the current view of muropeptide recognition. We show that NOD2 can recognize different natural muropeptides containing a meso-DAP residue (preferably in a non-terminal position), provided they are present at micromolar concentrations. NOD2 accepts muropeptides with long and branched peptide chains and requires an intact N-acetylmuramyl residue. Muropeptides with non-terminal meso-DAP can activate NOD1 as well, but, in this case, probably require peptidase pre-processing to expose the meso-DAP residue. Depending on NOD1/NOD2 ratio in specific cell types, meso-DAP-containing muropeptides can be recognized either primarily via NOD2 (in monocytes) or via NOD1 (in monocyte-derived macrophages and HEK293T-derived cells). The dual NOD1/NOD2 agonism of meso-DAP-containing muropeptides should be taken into account when assessing cellular responses to muropeptides and designing muropeptide immunostimulants and vaccine adjuvants.


Subject(s)
Diaminopimelic Acid/pharmacology , Immunity, Innate/drug effects , Macrophages/immunology , Monocytes/immunology , Nod1 Signaling Adaptor Protein/agonists , Nod2 Signaling Adaptor Protein/agonists , Adjuvants, Immunologic/pharmacology , Cells, Cultured , Cytokines/metabolism , HEK293 Cells , Humans , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Monocytes/cytology , Monocytes/drug effects , Monocytes/metabolism , Nod1 Signaling Adaptor Protein/metabolism , Nod2 Signaling Adaptor Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...