Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(40): 37413-37420, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37841123

ABSTRACT

The study describes a simple yet robust methodology for forming gradients in polymer coatings with nanometer-thickness precision. The thickness gradients of 0-20 nm in the coating are obtained by a reactive layer-by-layer assembly of polyester and polyethylenimine on gold substrates. Three parameters are important in forming thickness gradients: (i) the incubation time, (ii) the incubation concentration of the polymer solutions, and (iii) the tilt angle of the gold substrate during the dipping process. After examining these parameters, the characterization of the anisotropic surface obtained under the best conditions is presented in the manuscript. The thickness profile and nanomechanical characterization of the polymer gradients are characterized by atomic force microscopy. The roughness analysis has demonstrated that the coating exhibited decreasing roughness with increasing thickness. On the other hand, Young's moduli of the thin and thick coatings are 0.50 and 1.4 MPa, respectively, which assured an increase in mechanical stability with increasing coating thickness. Angle-dependent infrared spectroscopy reveals that the C-O-C ester groups of the polyesters exhibit a perpendicular orientation to the surface, while the C≡C groups are parallel to the surface. The surface properties of the polymer gradients are explored by fluorescence microscopy, proving that the dye's fluorescence intensity increases as the coating thickness increases. The significant benefit of the suggested methodology is that it promises thickness control of gradients in the coating as a consequence of the fast reaction kinetics between layers and the reaction time.

2.
Chem Asian J ; 18(15): e202300373, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37319334

ABSTRACT

Epoxy thermosets constitute a significant portion of high-performance plastics, as they possess excellent thermal and mechanical properties that are applicable in a wide range of industries. Nevertheless, traditional epoxy networks show strict limitations regarding chemical recycling due to their covalently crosslinked structures. Although existing methods provide partial solutions for the recycling of epoxy networks, it is urgent to develop more effective, sustainable, and permanent strategies that will solve the problem at hand. For this purpose, developing smart monomers with functional groups that enable the synthesis and development of fully recyclable polymers is of great importance. This review highlights recent advancements in chemically recyclable epoxy systems and their potential to support a circular plastic economy. Moreover, we evaluate the practicality of polymer syntheses and recycling techniques, and assess the applicability of these networks in industry.

3.
ACS Omega ; 7(27): 23332-23341, 2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35847292

ABSTRACT

Pressure from environmental nongovernmental organizations and the public has accelerated research on the development of innovative and renewable polymers and additives. Recently, biobased "green" plasticizers that can be covalently attached to replace toxic and migratory phthalate-based plasticizers have gained a lot of attention from researchers. In this work, we prepared an azide-functionalized soybean oil derivative (AzSBO) and investigated whether it can be used as a plasticizer. We covalently attached AzSBO to an electron-deficient triple-bond-containing polyester via a metal-free azide-alkyne click reaction. The thermal, mechanical, and solvent absorption behaviors of different amounts of azidated oil-containing polyesters were determined. Moreover, the plasticization efficiency of AzSBO was compared with the commercial plasticizers bis(2-ethylhexyl) phthalate and epoxidized soybean oil. At relatively lower AzSBO ratios, the degree of cross-linking was higher and thus the plasticization was less pronounced but the solvent resistance was significantly improved. As the ratio of AzSBO was increased, the glass transition temperature of the pristine polymer decreased up to 31 °C from 57 °C. Furthermore, the incorporation of AzSBO also improved the thermal properties and 20% AzSBO addition led to a 60 °C increase in the maximum weight loss temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...