Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Econ Entomol ; 109(6): 2561-2571, 2016 12.
Article in English | MEDLINE | ID: mdl-27986943

ABSTRACT

The flight of the lesser grain borer, Rhyzopertha dominica (F.), near grain storages and at distances from them, was investigated to assess the potential of these beetles to infest grain and spread insecticide resistance genes. We caught R. dominica in pheromone-baited flight traps (and blank controls) set at storages, in fields away from storages, and in native vegetation across a 12-mo period. A functional set of highly polymorphic microsatellite markers was developed, enabling population genetic analyses on the trapped beetles. Pheromone-baited traps caught just as many R. dominica adults at least 1 km from grain storages as were caught adjacent to grain storages. Samples of beetles caught were genetically homogeneous across the study area (over 7,000 km2) in South Queensland, Australia. However, a change in genetic structure was detected at one bulk storage site. Subsequent analysis detected a heterozygous excess, which indicated a population bottleneck. Only a few beetles were caught during the winter months of June and July. To assess the mating status and potential fecundity of dispersing R. dominica females, we captured beetles as they left grain storages and quantified offspring production and life span in the laboratory. Nearly all (95%) of these dispersing females had mated and these produced an average of 242 offspring. We demonstrated that R. dominica populations in the study area display a high degree of connectivity and this is a result of the active dispersal of mated individuals of high potential fecundity.


Subject(s)
Animal Distribution , Coleoptera/physiology , Genetic Variation , Sexual Behavior, Animal , Animals , Coleoptera/genetics , Female , Fertility , Insect Control , Male , Pheromones/pharmacology , Queensland , Spatio-Temporal Analysis
2.
J Econ Entomol ; 109(5): 2221-8, 2016 10.
Article in English | MEDLINE | ID: mdl-27515594

ABSTRACT

Effective pest management relies on accurate delimitation of species and, beyond this, on accurate species identification. Mitochondrial COI sequences are useful for providing initial indications in delimiting species but, despite acknowledged limitations in the method, many studies involving COI sequences and species problems remain unresolved. Here we illustrate how such impasses can be resolved with microsatellite and nuclear sequence data, to assess more directly the amount of gene flow between divergent lineages. We use a population genetics approach to test for random mating between two 8 ± 2% divergent COI lineages of the rusty grain beetle, Cryptolestes ferrugineus (Stephens). This species has become strongly resistant to phosphine, a fumigant used worldwide for disinfesting grain. The possibility of cryptic species would have significant consequences for resistance management, especially if resistance was confined to one mitochondrial lineage. We find no evidence of restricted gene flow or nonrandom mating across the two COI lineages of these beetles, rather we hypothesize that historic population structure associated with early Pleistocene climate changes likely contributed to divergent lineages within this species.


Subject(s)
Coleoptera/physiology , Genetic Variation , Insecticide Resistance , Insecticides/pharmacology , Phosphines/pharmacology , Sexual Behavior, Animal , Animals , Coleoptera/drug effects , Coleoptera/genetics , Electron Transport Complex IV/genetics , Insect Proteins/genetics , Microsatellite Repeats , Mitochondrial Proteins/genetics , Phylogeny , Sequence Analysis, DNA
3.
Heredity (Edinb) ; 115(3): 188-94, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25853517

ABSTRACT

Phosphine (PH3) fumigation is the primary method worldwide for controlling insect pests of stored commodities. Over-reliance on phosphine, however, has led to the emergence of strong resistance. Detailed genetic studies previously identified two loci, rph1 and rph2, that interact synergistically to create a strong resistance phenotype. We compared the genetics of phosphine resistance in strains of Rhyzopertha dominica and Tribolium castaneum from India and Australia, countries having similar pest species but widely differing in pest management practices. Sequencing analysis of the rph2 locus, dihydrolipoamide dehydrogenase (dld), identified two structurally equivalent variants, Proline49>Serine (P49S) in one R. dominica strain and P45S in three strains of T. castaneum from India. These variants of the DLD protein likely affect FAD cofactor interaction with the enzyme. A survey of insects from storage facilities across southern India revealed that the P45/49S variant is distributed throughout the region at very high frequencies, in up to 94% of R. dominica and 97% of T. castaneum in the state of Tamil Nadu. The abundance of the P45/49S variant in insect populations contrasted sharply with the evolutionary record in which the variant was absent from eukaryotic DLD sequences. This suggests that the variant is unlikely to provide a strong selective advantage in the absence of phosphine fumigation.


Subject(s)
Coleoptera/genetics , Dihydrolipoamide Dehydrogenase/genetics , Insect Proteins/genetics , Insecticide Resistance/genetics , Phosphines , Animals , Australia , Coleoptera/enzymology , Evolution, Molecular , Food Storage , Fumigation , Gene Frequency , India , Insecticides , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Tribolium/enzymology , Tribolium/genetics
4.
Mol Ecol ; 20(8): 1635-46, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21375637

ABSTRACT

Tribolium castaneum (Herbst) has been used as a model organism to develop and test important ecological and evolutionary concepts and is also a major pest of grain and grain products globally. This beetle species is assumed to be a good colonizer of grain storages through anthropogenic movement of grain, and active dispersal by flight is considered unlikely. Studies using T. castaneum have therefore used confined or walking insects. We combine an ecological study of dispersal with an analysis of gene flow using microsatellites to investigate the spatiotemporal dynamics and adult flight of T. castaneum in an ecological landscape in eastern Australia. Flying beetles were caught in traps at grain storages and in fields at least 1 km from the nearest stored grain at regular intervals for an entire year. Significantly more beetles were trapped at storages than in fields, and almost no beetles were caught in native vegetation reserves many kilometres from the nearest stored grain. Genetic differentiation between beetles caught at storages and in fields was low, indicating that although T. castaneum is predominantly aggregated around grain storages, active dispersal takes place to the extent that significant gene flow occurs between them, mitigating founder effects and genetic drift. By combining ecological and molecular techniques, we reveal much higher levels of active dispersal through adult flight in T. castaneum than previously thought. We conclude that the implications of adult flight to previous and future studies on this model organism warrant consideration.


Subject(s)
Flight, Animal , Gene Flow , Genetic Variation , Tribolium/genetics , Agriculture , Animals , Australia , Environment , Female , Founder Effect , Genotype , Male , Microsatellite Repeats , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...