Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Ther Oncol ; 32(3): 200834, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39045029

ABSTRACT

Tumor-homing neural stem cell (NSC) therapy is emerging as a promising treatment for aggressive cancers of the brain. Despite their success, developing tumor-homing NSC therapy therapies that maintain durable tumor suppression remains a challenge. Herein, we report a synergistic combination regimen where the novel small molecule TR-107 augments NSC-tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) therapy (hiNeuroS-TRAIL) in models of the incurable brain cancer glioblastoma (GBM) in vitro. We report that the combination of hiNeuroS-TRAIL and TR-107 synergistically upregulated caspase markers and restored sensitivity to the intrinsic apoptotic pathway by significantly downregulating inhibitory pathways associated with chemoresistance and radioresistance in the TRAIL-resistant LN229 cell line. This combination also showed robust tumor suppression and enhanced survival of mice bearing human xenografts of both solid and invasive GBMs. These findings elucidate a novel combination regimen and suggest that the combination of these clinically relevant agents may represent a new therapeutic option with increased efficacy for patients with GBM.

2.
bioRxiv ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38915605

ABSTRACT

Spleen tyrosine kinase (SYK) is a non-receptor tyrosine kinase that is activated by phosphorylation events downstream of FcR, B-cell and T-cell receptors, integrins, and C-type lectin receptors. When the tandem Src homology 2 (SH2) domains of SYK bind to phosphorylated immunoreceptor tyrosine-based activation motifs (pITAMs) contained within these immunoreceptors, or when SYK is phosphorylated in interdomain regions A and B, SYK is activated. SYK gain-of-function (GoF) variants were previously identified in six patients that had higher levels of phosphorylated SYK and phosphorylated downstream proteins JNK and ERK. Furthermore, the increased SYK activation resulted in the clinical manifestation of immune dysregulation, organ inflammation, and a predisposition for lymphoma. The knowledge that the SYK GoF variants have enhanced activity was leveraged to develop a SYK NanoBRET cellular target engagement assay in intact live cells with constructs for the SYK GoF variants. Herein, we developed a potent SYK-targeted NanoBRET tracer using a SYK donated chemical probe, MRL-SYKi, that enabled a NanoBRET cellular target engagement assay for SYK GoF variants, SYK(S550Y), SYK(S550F), and SYK(P342T). We determined that ATP-competitive SYK inhibitors bind potently to these SYK variants in intact live cells. Additionally, we demonstrated that MRL-SYKi can effectively reduce the catalytic activity of SYK variants, and the phosphorylation levels of SYK(S550Y) in an epithelial cell line (SW480) stably expressing SYK(S550Y).

3.
Biomedicines ; 11(6)2023 May 31.
Article in English | MEDLINE | ID: mdl-37371693

ABSTRACT

Transcription of the mitochondrial genome is essential for the maintenance of oxidative phosphorylation (OXPHOS) and other functions directly related to this unique genome. Considerable evidence suggests that mitochondrial transcription is dysregulated in cancer and cancer metastasis and contributes significantly to cancer cell metabolism. Recently, inhibitors of the mitochondrial DNA-dependent RNA polymerase (POLRMT) were identified as potentially attractive new anti-cancer compounds. These molecules (IMT1, IMT1B) inactivate cancer cell metabolism through reduced transcription of mitochondrially-encoded OXPHOS subunits such as ND1-5 (Complex I) and COI-IV (Complex IV). Studies from our lab have discovered small molecule regulators of the mitochondrial matrix caseinolytic protease (ClpP) as probable inhibitors of mitochondrial transcription. These compounds activate ClpP proteolysis and lead to the rapid depletion of POLRMT and other matrix proteins, resulting in inhibition of mitochondrial transcription and growth arrest. Herein we present a comparison of POLRMT inhibition and ClpP activation, both conceptually and experimentally, and evaluate the results of these treatments on mitochondrial transcription, inhibition of OXPHOS, and ultimately cancer cell growth. We discuss the potential for targeting mitochondrial transcription as a cancer cell vulnerability.

SELECTION OF CITATIONS
SEARCH DETAIL
...