Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(5): 7063-7072, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35077151

ABSTRACT

Organic field-effect transistors (OFETs) have shown great potential for applications that require low temperature deposition on large and flexible substrates. To increase their performance, in particular a high transconductance and transit frequency, the transistor channel length has to be scaled into the submicrometer regime, which can be easily achieved in vertical organic field effect transistors (VOFETs). However, despite high performance observed in VOFETs, these transistors usually suffer from short channel effects like weak saturation of the drain current and direct source-drain leakage resulting in large off currents. Here, we study the influence of the injection barrier at the source electrode on the OFF currents, on/off ratio, and transconductance of vertical OFETs. We use two semiconducting materials, 2,6-diphenyl anthracene (DPA), and C60 to vary the injection barrier at the source electrode and are able to show that increasing the Schottky barrier at the source electrode can decrease the direct source/drain leakage by 3 orders of magnitude. However, the increased injection barrier at the source electrode comes at the expense of an increased contact resistance, which in turn will decrease its transconductance and transit frequency. With the help of a 2D drift-diffusion simulation we show that the trade-off between low off currents and high transconductance is inherent to the current VOFET device setup and that new approaches have to be found to design VOFETs that combine good switching properties with high performance.

2.
ACS Appl Mater Interfaces ; 12(44): 49857-49865, 2020 Nov 04.
Article in English | MEDLINE | ID: mdl-33103885

ABSTRACT

Doping has been shown to not only provide additional degrees of freedom in the design of organic field-effect transistors (OFETs) but to increase their performance and stability as well. An analytical model based on the assumption of a square doping profile inside the channel is presented here that describes the effect of doping on the transfer characteristic of OFETs. The model is validated experimentally by a series of OFETs with varying doping conditions. The precise doping profile in the transistor channel is determined by fitting the capacitance/voltage response of doped metal-insulator-semiconductor (MIS) junctions using an AC small-signal drift-diffusion simulation. It is shown that the real doping profile deviates from the simplifying assumptions of the analytical model, i.e., it is found that the effective doping concentration at the dielectric/semiconductor interface is reduced. However, it is shown that the analytical model is not sensitive to this deviation as only the total density charges per unit area determine the changes in the transistor behavior. Overall, the presented theory provides new design rules that can be used to guide the development of doped OFETs with high performance.

3.
Nat Commun ; 11(1): 2515, 2020 May 20.
Article in English | MEDLINE | ID: mdl-32433542

ABSTRACT

Organic Electrochemical Transistors are versatile sensors that became essential for the field of organic bioelectronics. However, despite their importance, an incomplete understanding of their working mechanism is currently precluding a targeted design of Organic Electrochemical Transistors and it is still challenging to formulate precise design rules guiding materials development in this field. Here, it is argued that current capacitive device models neglect lateral ion currents in the transistor channel and therefore fail to describe the equilibrium state of Organic Electrochemical Transistors. An improved model is presented, which shows that lateral ion currents lead to an accumulation of ions at the drain contact, which significantly alters the transistor behavior. Overall, these results show that a better understanding of the interface between the organic semiconductor and the drain electrode is needed to reach a full understanding of Organic Electrochemical Transistors.

SELECTION OF CITATIONS
SEARCH DETAIL
...