Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Virology ; 589: 109915, 2024 01.
Article in English | MEDLINE | ID: mdl-37931588

ABSTRACT

A small molecule screen identified several cardiotonic steroids (digitoxin and ouabain) and the ionophore monensin as potent inhibitors of HCoV-229E, HCoV-OC43, and SARS-CoV-2 replication with EC50s in the low nM range. Subsequent tests confirmed antiviral activity in primary cell models including human nasal epithelial cells and lung organoids. Addition of digitoxin, ouabain, or monensin strongly reduced viral gene expression as measured by both viral protein and RNA accumulation. Furthermore, the compounds acted post virus entry. While the antiviral activity of digitoxin was dependent upon activation of the MEK and JNK signaling pathways but not signaling through GPCRs, the antiviral effect of monensin was reversed upon inhibition of several signaling pathways. Together, the data demonstrates the potent anti-coronavirus properties of two classes of FDA approved drugs that function by altering the properties of the infected cell, rendering it unable to support virus replication.


Subject(s)
Cardiac Glycosides , Coronavirus 229E, Human , Humans , Cardiac Glycosides/pharmacology , Monensin/pharmacology , Ouabain/pharmacology , Digitoxin/pharmacology , Antiviral Agents/pharmacology
2.
J Virol ; 97(10): e0039623, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37706687

ABSTRACT

IMPORTANCE: This study highlights the crucial role RNA processing plays in regulating viral gene expression and replication. By targeting SR kinases, we identified harmine as a potent inhibitor of HIV-1 as well as coronavirus (HCoV-229E and multiple SARS-CoV-2 variants) replication. Harmine inhibits HIV-1 protein expression and reduces accumulation of HIV-1 RNAs in both cell lines and primary CD4+ T cells. Harmine also suppresses coronavirus replication post-viral entry by preferentially reducing coronavirus sub-genomic RNA accumulation. By focusing on host factors rather than viral targets, our study offers a novel approach to combating viral infections that is effective against a range of unrelated viruses. Moreover, at doses required to inhibit virus replication, harmine had limited toxicity and minimal effect on the host transcriptome. These findings support the viability of targeting host cellular processes as a means of developing broad-spectrum anti-virals.


Subject(s)
Antiviral Agents , Coronavirus , HIV-1 , Harmine , Humans , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Coronavirus/drug effects , Coronavirus/physiology , Coronavirus Infections/drug therapy , Harmine/pharmacology , Harmine/therapeutic use , HIV-1/drug effects , HIV-1/physiology , Virus Replication/drug effects
3.
Retrovirology ; 19(1): 18, 2022 08 19.
Article in English | MEDLINE | ID: mdl-35986377

ABSTRACT

BACKGROUND: The generation of over 69 spliced HIV-1 mRNAs from one primary transcript by alternative RNA splicing emphasizes the central role that RNA processing plays in HIV-1 replication. Control is mediated in part through the action of host SR proteins whose activity is regulated by multiple SR kinases (CLK1-4, SRPKs). METHODS: Both shRNA depletion and small molecule inhibitors of host SR kinases were used in T cell lines and primary cells to evaluate the role of these factors in the regulation of HIV-1 gene expression. Effects on virus expression were assessed using western blotting, RT-qPCR, and immunofluorescence. RESULTS: The studies demonstrate that SR kinases play distinct roles; depletion of CLK1 enhanced HIV-1 gene expression, reduction of CLK2 or SRPK1 suppressed it, whereas CLK3 depletion had a modest impact. The opposing effects of CLK1 vs. CLK2 depletion were due to action at distinct steps; reduction of CLK1 increased HIV-1 promoter activity while depletion of CLK2 affected steps after transcript initiation. Reduced CLK1 expression also enhanced the response to several latency reversing agents, in part, by increasing the frequency of responding cells, consistent with a role in regulating provirus latency. To determine whether small molecule modulation of SR kinase function could be used to control HIV-1 replication, we screened a GSK library of protein kinase inhibitors (PKIS) and identified several pyrazolo[1,5-b] pyridazine derivatives that suppress HIV-1 gene expression/replication with an EC50 ~ 50 nM. The compounds suppressed HIV-1 protein and viral RNA accumulation with minimal impact on cell viability, inhibiting CLK1 and CLK2 but not CLK3 function, thereby selectively altering the abundance of individual CLK and SR proteins in cells. CONCLUSIONS: These findings demonstrate the unique roles played by individual SR kinases in regulating HIV-1 gene expression, validating the targeting of these functions to either enhance latency reversal, essential for "Kick-and-Kill" strategies, or to silence HIV protein expression for "Block-and-Lock" strategies.


Identifying cellular factors that regulate HIV-1 RNA processing provides important insights into novel strategies to control this infection. Different members of the SR kinase family have distinct roles in regulating virus expression because they affect distinct steps of transcription/RNA processing. We identify inhibitors of these kinases that suppress HIV-1 gene expression and replication in multiple assay systems at nanomolar concentrations with limited or no cytotoxicity. Our results highlight the therapeutic potential of targeting the post-integration stage of the HIV-1 lifecycle to selectively enhance or reverse provirus latency. A greater understanding of the molecular mechanisms underlying the effects observed will facilitate the development of more targeted approaches to modulate HIV-1 latency on the path toward a "functional" cure for this infection.


Subject(s)
HIV-1 , Alternative Splicing , Gene Expression , HIV-1/physiology , Protein Kinase Inhibitors/pharmacology , RNA, Viral/genetics , Virus Latency
4.
Viruses ; 14(1)2021 12 30.
Article in English | MEDLINE | ID: mdl-35062264

ABSTRACT

Medicinal chemistry optimization of a previously described stilbene inhibitor of HIV-1, 5350150 (2-(2-(5-nitro-2-thienyl)vinyl)quinoline), led to the identification of the thiazole-5-carboxamide derivative (GPS491), which retained potent anti-HIV-1 activity with reduced toxicity. In this report, we demonstrate that the block of HIV-1 replication by GPS491 is accompanied by a drastic inhibition of viral gene expression (IC50 ~ 0.25 µM), and alterations in the production of unspliced, singly spliced, and multiply spliced HIV-1 RNAs. GPS491 also inhibited the replication of adenovirus and multiple coronaviruses. Low µM doses of GPS491 reduced adenovirus infectious yield ~1000 fold, altered virus early gene expression/viral E1A RNA processing, blocked viral DNA amplification, and inhibited late (hexon) gene expression. Loss of replication of multiple coronaviruses (229E, OC43, SARS-CoV2) upon GPS491 addition was associated with the inhibition of viral structural protein expression and the formation of virus particles. Consistent with the observed changes in viral RNA processing, GPS491 treatment induced selective alterations in the accumulation/phosphorylation/function of splicing regulatory SR proteins. Our study establishes that a compound that impacts the activity of cellular factors involved in RNA processing can prevent the replication of several viruses with minimal effect on cell viability.


Subject(s)
Adenoviridae/drug effects , Antiviral Agents/pharmacology , Coronavirus/drug effects , HIV-1/drug effects , RNA Processing, Post-Transcriptional/drug effects , Thiazoles/pharmacology , Virus Replication/drug effects , Adenoviridae/physiology , Antiviral Agents/chemistry , Cell Line , Coronavirus/classification , Coronavirus/physiology , Gene Expression/drug effects , HIV-1/physiology , Humans , RNA Splicing Factors/metabolism , RNA, Viral/metabolism , Thiazoles/chemistry
5.
Sci Rep ; 10(1): 7794, 2020 05 08.
Article in English | MEDLINE | ID: mdl-32385328

ABSTRACT

Fusarium head blight (FHB) is a severe disease of wheat (Triticum aestivum L.). Qfhb1 is the most important quantitative trait locus (QTL) for FHB resistance. We previously identified wheat gene WFhb1-1 (aka WFhb1-c1) as a candidate for FHB resistance gene. Here we report that WFhb1-1 has been cloned. The gene (GenBank # KU304333.1) consists of a single exon, encoding a putative membrane protein of 127 amino acids. WFhb1-1 protein produced in Pichia pastoris inhibits growth of both F. graminearum and P. pastoris in culture. Western Blotting with anti- WFhb1-1 antibody revealed a significant decrease (p < 0.01) in WFhb1-1 accumulation, 12 hours post Fusarium inoculation in non-Qfhb1-carrier wheat but not in Qfhb1-carrier wheat. Overexpressing WFhb1-1 in non-Qfhb1-carrier wheat led to a significant decrease (p < 0.01) in Fusarium-damaged rachis rate, Fusarium-diseased kernel rate and DON content in harvested kernels, while silencing WFhb1-1 in Qfhb1-carrier wheat resulted in a significant increase (p < 0.01) in FHB severity. Therefore, WFhb1-1 is an important FHB resistance gene with a potential antifungal function and probably a key functional component of Qfhb1 in wheat. A model regarding how WFhb1-1 functions in FHB resistance/susceptibility is hypothesized and discussed.


Subject(s)
Disease Resistance/genetics , Fusarium , Genes, Plant , Plant Diseases/genetics , Plant Diseases/microbiology , Triticum/genetics , Triticum/microbiology , Amino Acid Substitution , Base Sequence , Chromosome Mapping , Cloning, Molecular , Gene Expression Profiling , Gene Expression Regulation, Plant , Mutation , Plants, Genetically Modified , Quantitative Trait Loci , Quantitative Trait, Heritable , Sequence Analysis, DNA
6.
G3 (Bethesda) ; 9(5): 1393-1403, 2019 05 07.
Article in English | MEDLINE | ID: mdl-30808689

ABSTRACT

Perennialism is common among the higher plants, yet little is known about its inheritance. Previous genetic studies of the perennialism in Zea have yielded contradictory results. In this study, we take a reductionist approach by specifically focusing on one trait: regrowth (the plant's ability to restart a new life cycle after senescence on the same body). To address this, six hybrids were made by reciprocally crossing perennial Zea diploperennis Iltis, Doebley & R. Guzman with inbred lines B73 and Mo17 and Rhee Flint, a heirloom variety, of Zmays L. ssp. mays All the F1 plants demonstrated several cycles of growth, flowering, senescence and regrowth into normal flowering plants, indicating a dominant effect of the Z. diploperennis alleles. The regrowability (i.e., the plants' ability to regrow after senescence) was stably transmitted to progeny of the hybrids. Segregation ratios of regrowth in the F2 generations are consistent with the trait controlled by two dominant, complementary loci, but do not exclude the influence of other modifiers or environment. Genome-wide screening with genotyping-by-sequencing technology indicated two major regrowth loci, regrowth 1 (reg1) and regrowth 2 (reg2), were on chromosomes 2 and 7, respectively. These findings lay the foundation for further exploration of the molecular mechanism of regrowth in Z. diploperennis Importantly, our data indicate that there is no major barrier to transferring this trait into maize or other grass crops for perennial crop development with proper technology, which enhances sustainability of grain crop production in an environmentally friendly way.


Subject(s)
Genome, Plant , Genome-Wide Association Study , Genomics , Quantitative Trait Loci , Zea mays/genetics , Chromosome Mapping , Crosses, Genetic , Genetic Association Studies , Genetic Testing , Genomics/methods , Phenotype , Plant Development/genetics , Polymerase Chain Reaction , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...