Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 26(16): 13221-6, 2010 Aug 17.
Article in English | MEDLINE | ID: mdl-20695562

ABSTRACT

The cleavage of decanethioacetate (C10SAc) has been studied by (1)H nuclear magnetic resonance (NMR) spectroscopy and scanning tunneling microscopy (STM) imaging of in situ prepared decanethiolate self-assembled monolayers (SAMs) on Au(111). Solutions of C10SAc (46 mM) and previously reported cleavage reagents (typically 58 mM) in CD(3)OD were monitored at 20 degrees C by NMR spectroscopy. Cleavage by ammonium hydroxide, propylamine, or hydrochloric acid was not complete within 48 h; cleavage by potassium carbonate was complete within 24 h and that by potassium hydroxide or 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) within 2 h. Similar cleavage rates were observed for phenylthioacetate. The degree of molecular ordering determined by STM imaging increased with increasing extent of in situ cleavage by these same reagents (2.5 mM C10SAc and 2.5 mM reagent in ethanol for 1 h, then 16 h immersion of Au/mica). Less effective cleavage reagents did not cleave the C10SAc sufficiently to decanethiol (C10SH) and gave mostly disordered SAMs. In contrast, KOH or DBU completely cleaved the C10SAc to C10SH and led to well-ordered SAMs composed of (square root(3) x square root(3))R30 degrees domains that are indistinguishable from SAMs grown from C10SH. Monolayer formation from thioacetates in the absence of cleavage agents is likely due to thiol or disulfide impurity in the thioacetates. Eliminating disulfide by using Bu(3)P as a sacrificial reductant also helped to produce good molecular order in the SAM. The methods presented here allow routine growth of molecularly ordered alkanethiolate SAMs from thioacetates using reagents of ordinary purity under ambient, benchtop conditions.

2.
Nanotechnology ; 20(32): 325705, 2009 Aug 12.
Article in English | MEDLINE | ID: mdl-19620750

ABSTRACT

An important design approach for sensitive and robust surface enhanced Raman scattering (SERS) substrates is the use of metal nanoparticle aggregates with nanometer tailored interstitial distances between their surfaces, in order to confine the electromagnetic energy. The nanostructural instability of the aggregates to agglomeration due to their strong van der Waals force poses a challenge for the preparation of large-scale, reliable SERS substrates. We present a novel route for preparing stable and highly active SERS substrates using polymer-metal fractal nanocomposites. This methodology is based on the unique morphology of fractal nanocomposite structures formed just below the percolation threshold that consists of extremely narrow (approximately 0.8 nm) interstitial polymer junctions between the Ag nanoparticle aggregates along with the appropriate nanoscale (<100 nm) surface roughness. Such nanomorphology allows the formation of well-defined and large numbers of hot spots where the localization of electromagnetic energy can result in very large enhancement of the Raman signal. We applied a simple plasma etching process to remove the polymer structures that allowed the formation of Ag structures with very uniform and controllable inter-particle gaps that were proved to provide significant SERS enhancement of typical biological systems such as double-stranded deoxyribonucleic acid (dsDNA). These advanced nanocomposite films could be used for the development of large-scale spectroscopy-based sensors for direct detection and analysis of various biological and chemical samples.


Subject(s)
Fractals , Nanocomposites/chemistry , Polymers/chemistry , Silver/chemistry , Spectrum Analysis, Raman/methods , Animals , Buffers , DNA/metabolism , Male , Microscopy, Atomic Force , Nanocomposites/ultrastructure , Salmon , Solutions , Surface Properties , X-Ray Diffraction
3.
J Am Chem Soc ; 128(18): 6052-3, 2006 May 10.
Article in English | MEDLINE | ID: mdl-16669671

ABSTRACT

We demonstrate a new type of Au{111} substrate that is both atomically flat and optically transparent, which consists of solution-grown flat gold nanoparticles (FGNPs) deposited on indium tin oxide (ITO)-coated glass. We show that FGNPs are atomically flat single-crystal plates with large {111} faces that expose only 2-4 atomic layers. These FGNPs are excellent platforms for alkanethiol self-assembled monolayers (SAMs) and for high-resolution scanning tunneling microscopy (STM). Our supported FGNPs are also low-cost Au{111} substrates, employing only basic wet chemical techniques in preparation. This approach should be broadly applicable to other types of substrates for scanning probe microscopies.

SELECTION OF CITATIONS
SEARCH DETAIL
...