Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38352472

ABSTRACT

Deficits in chemosensory processing are associated with healthy aging, as well as numerous neurodegenerative disorders, including Alzheimer's Disease (AD). In many cases, chemosensory deficits are harbingers of neurodegenerative disease, and understanding the mechanistic basis for these changes may provide insight into the fundamental dysfunction associated with aging and neurodegeneration. The fruit fly, Drosophila melanogaster , is a powerful model for studying chemosensation, aging, and aging-related pathologies, yet the effects of aging and neurodegeneration on chemosensation remain largely unexplored in this model, particularly with respect to taste. To determine whether the effects of aging on taste are conserved in flies, we compared the response of flies to different appetitive tastants. Aging impaired response to sugars, but not medium-chain fatty acids that are sensed by a shared population of neurons, revealing modality-specific deficits in taste. Selective expression of the human amyloid beta (Aß) 1-42 peptide bearing the Arctic mutation (E693E) associated with early onset AD in the neurons that sense sugars and fatty acids phenocopies the effects of aging, suggesting that the age-related decline in response is localized to gustatory neurons. Functional imaging of gustatory axon terminals revealed reduced response to sugar, but not fatty acids. Axonal innervation of the fly taste center was largely intact in aged flies, suggesting that reduced sucrose response does not derive from neurodegeneration. Conversely, expression of the amyloid peptide in sweet-sensing taste neurons resulted in reduced innervation of the primary fly taste center. A comparison of transcript expression within the sugar-sensing taste neurons revealed age-related changes in 66 genes, including a reduction in odorant-binding protein class genes that are also expressed in taste sensilla. Together, these findings suggest that deficits in taste detection may result from signaling pathway-specific changes, while different mechanisms underly taste deficits in aged and AD model flies. Overall, this work provides a model to examine cellular deficits in neural function associated with aging and AD.

2.
Cell Rep ; 42(10): 113297, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37864792

ABSTRACT

Comparative studies of related but ecologically distinct species can reveal how the nervous system evolves to drive behaviors that are particularly suited to certain environments. Drosophila melanogaster is a generalist that feeds and oviposits on most overripe fruits. A sibling species, D. sechellia, is an obligate specialist of Morinda citrifolia (noni) fruit, which is rich in fatty acids (FAs). To understand evolution of noni taste preference, we characterized behavioral and cellular responses to noni-associated FAs in three related drosophilids. We find that mixtures of sugar and noni FAs evoke strong aversion in the generalist species but not in D. sechellia. Surveys of taste sensory responses reveal noni FA- and species-specific differences in at least two mechanisms-bitter neuron activation and sweet neuron inhibition-that correlate with shifts in noni preference. Chemoreceptor mutant analysis in D. melanogaster predicts that multiple genetic changes account for evolution of gustatory preference in D. sechellia.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Animals , Drosophila melanogaster/genetics , Drosophila/genetics , Drosophila Proteins/genetics , Taste , Fatty Acids
3.
Article in English | MEDLINE | ID: mdl-37612142

ABSTRACT

In insects, gustatory neurons sense chemicals upon contact and directly inform many behaviors critical for survival and reproduction, including biting, feeding, mating, and egg laying. However, the taste sensory system is underexplored in many anthropophilic disease vectors such as mosquitoes, which acquire and transmit human pathogens during blood feeding from human hosts. This results in a big gap in vector biology-the study of organisms that spread disease by transmitting pathogens-because insect vectors closely interact with humans while selecting suitable individuals and appropriate bite sites for blood meals. Human sweat and skin-associated chemistries are rich in nonvolatile compounds that can be sensed by the mosquito's taste system when she lands on the skin. Taste sensory units, called sensilla, are distributed in many organs across the mosquito body, including the mouthparts, legs, and ovipositors (female-specific structures used to lay eggs). Each sensillum is innervated by as many as five taste neurons, which allow detection and discrimination between various tastants such as water, sugars, salts, amino acids, and plant-derived compounds that taste bitter to humans. Single-sensillum recordings provide a robust way to survey taste responsiveness of individual sensilla to various diagnostic and ecologically relevant chemicals. Such analyses are of immense value for understanding links between mosquito taste responses and behaviors to specific chemical cues and can provide insights into why mosquitoes prefer certain hosts. The results can also aid development of strategies to disrupt close-range mosquito-human interactions to control disease transmission. Here we describe a protocol that is curated for electrophysiological recordings from taste sensilla in mosquitoes and sure to yield exciting results for the field.

4.
Article in English | MEDLINE | ID: mdl-37612144

ABSTRACT

Analysis of taste sensory responses has been a powerful approach for understanding principles of taste detection and coding. The shared architecture of external taste sensing units, called sensilla, in insects opened up the study of tastant-evoked responses in any model of choice using a single-sensillum tip recording method that was developed in the mid-1900s. Early studies in blowflies were instrumental for identifying distinct taste neurons based on their responses to specific categories of chemicals. Broader system-wide analyses of whole organs have since been performed in the genetic model insect Drosophila melanogaster, revealing principles of stereotypical organization and function that appear to be evolutionarily conserved. Although limited in scope, investigations of taste sensory responses in mosquitoes showcase conservation in sensillar organization, as well as in groupings of functionally distinct taste neurons in each sensillum. The field is now poised for more thorough dissections of mosquito taste function, which should be of immense value in understanding close-range chemosensory interactions of mosquitoes with their hosts and environment. Here, we provide an introduction to the basic structure of a taste sensillum and functional analysis of the chemosensory neurons within it.

5.
Chem Senses ; 482023 01 01.
Article in English | MEDLINE | ID: mdl-37201555

ABSTRACT

High concentrations of dietary salt are harmful to health. Like most animals, Drosophila melanogaster are attracted to foods that have low concentrations of salt, but show strong taste avoidance of high salt foods. Salt in known on multiple classes of taste neurons, activating Gr64f sweet-sensing neurons that drive food acceptance and 2 others (Gr66a bitter and Ppk23 high salt) that drive food rejection. Here we find that NaCl elicits a bimodal dose-dependent response in Gr64f taste neurons, which show high activity with low salt and depressed activity with high salt. High salt also inhibits the sugar response of Gr64f neurons, and this action is independent of the neuron's taste response to salt. Consistent with the electrophysiological analysis, feeding suppression in the presence of salt correlates with inhibition of Gr64f neuron activity, and remains if high salt taste neurons are genetically silenced. Other salts such as Na2SO4, KCl, MgSO4, CaCl2, and FeCl3 act on sugar response and feeding behavior in the same way. A comparison of the effects of various salts suggests that inhibition is dictated by the cationic moiety rather than the anionic component of the salt. Notably, high salt-dependent inhibition is not observed in Gr66a neurons-response to a canonical bitter tastant, denatonium, is not altered by high salt. Overall, this study characterizes a mechanism in appetitive Gr64f neurons that can deter ingestion of potentially harmful salts.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Drosophila melanogaster , Sodium Chloride, Dietary/pharmacology , Salts/pharmacology , Taste/physiology , Feeding Behavior , Sugars/pharmacology , Sodium Chloride/pharmacology , Drosophila Proteins/genetics
6.
iScience ; 26(1): 105777, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36594011

ABSTRACT

Basic volatiles like ammonia are found in insect environments, and at high concentrations cause an atypical action potential burst, followed by inhibition in multiple classes of olfactory receptor neurons (ORNs) in Drosophila melanogaster. During the period of inhibition, ORNs are unable to fire action potentials to their ligands but continue to display receptor potentials. An increase in calcium is also observed in antennal cells of Drosophila and Aedes aegypti. In the gustatory system, ammonia inhibits sugar and salt responses in a dose-dependent manner. Other amines show similar effects in both gustatory and olfactory neurons, correlated with basicity. The concentrations that inhibit neurons reduce proboscis extension to sucrose in Drosophila. In Aedes, a brief exposure to volatile ammonia abolishes attraction to human skin odor for several minutes. These findings reveal an effect that prevents detection of attractive ligands in the olfactory and gustatory systems and has potential in insect control.

7.
Cold Spring Harb Protoc ; 2023(4): pdb.top107803, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36446528

ABSTRACT

The chemical senses-smell and taste-detect and discriminate an enormous diversity of environmental stimuli and provide fascinating but challenging models to investigate how sensory cues are represented in the brain. Important stimulus-coding events occur in peripheral sensory neurons, which express specific combinations of chemosensory receptors with defined ligand-response profiles. These receptors convert ligand recognition into spatial and temporal patterns of neural activity that are transmitted to, and interpreted in, central brain regions. Drosophila melanogaster provides an attractive model to study chemosensory coding because it possesses relatively simple peripheral olfactory and gustatory systems that display many organizational parallels to those of vertebrates. Moreover, nearly all peripheral chemosensory neurons have been molecularly characterized and are accessible for physiological analysis, as they are exposed on the surface of sensory organs housed in specialized hairs called sensilla. Here, we briefly review anatomical, molecular, and physiological properties of adult Drosophila olfactory and gustatory systems and provide background to methods for electrophysiological recordings of ligand-evoked activity from different types of chemosensory sensilla.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Sensilla/physiology , Drosophila melanogaster , Ligands , Smell , Taste/physiology
8.
Cold Spring Harb Protoc ; 2023(4): pdb.prot108063, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36446530

ABSTRACT

Olfactory systems detect and discriminate an enormous diversity of volatile environmental stimuli and provide important paradigms to investigate how sensory cues are represented in the brain. Key stimulus-coding events occur in peripheral olfactory sensory neurons, which typically express a single olfactory receptor-from a large repertoire encoded in the genome-with a defined ligand-response profile. These receptors convert odor ligand recognition into spatial and temporal patterns of neural activity that are transmitted to, and interpreted in, central brain regions. Drosophila provides an attractive model to study olfactory coding because it possesses a relatively simple peripheral olfactory system that displays many organizational parallels to those of vertebrates. Moreover, nearly all olfactory sensory neurons have been molecularly characterized and are accessible for physiological analysis, as they are exposed on the surface of sensory organs (antennae and maxillary palps) housed in specialized hairs called sensilla. This protocol describes how to perform recordings of odor-evoked activity from Drosophila olfactory sensilla, covering the basics of sample preparation, setting up the electrophysiology rig, assembling an odor stimulus-delivery device, and data analysis. The methodology can be used to characterize the ligand-recognition properties of most olfactory sensory neurons and the role of olfactory receptors (and other molecular components) in signal transduction.


Subject(s)
Olfactory Receptor Neurons , Sensilla , Animals , Sensilla/physiology , Ligands , Olfactory Receptor Neurons/physiology , Smell/physiology , Odorants , Drosophila
9.
Cold Spring Harb Protoc ; 2023(4): pdb.prot108064, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36446534

ABSTRACT

Gustatory systems sense chemicals upon contact and provide a model to investigate how these stimuli are encoded to inform various behavioral decisions including choice of foods, egg-laying sites, and mating partners. Multiple organs in the body house peripheral gustatory sensory neurons, the axons of which project to discrete regions in the subesophageal zone and ventral ganglion, representing both the location and quality of the taste stimulus. Taste neurons are broadly divided into subpopulations associated with either positive or negative behavioral valence, each expressing combinations of taste receptors-in some cases, more than 30 receptors-encoded by one or more chemosensory gene families that together determine their chemical response properties. Drosophila provides a powerful model to study gustatory coding because a majority of the taste sensory units (sensilla) are present in external taste organs (labellum and legs) and are accessible for electrophysiological analysis of tastant-evoked responses. Moreover, a large body of work on the basic characteristics of individual taste neurons housed in a sensillum, as well as on functional surveys of entire taste organs, provides a foundation for investigating further questions about taste coding, adaptability, and evolution. This protocol describes how to perform recordings of stimulus-evoked activity from Drosophila taste sensilla covering the basics of setting up the electrophysiology rig and stimulus-delivery device, sample preparation, and performing and analyzing the recordings.


Subject(s)
Sensilla , Taste , Animals , Taste/genetics , Drosophila , Sense Organs/physiology , Neurons
10.
PLoS Genet ; 18(8): e1010357, 2022 08.
Article in English | MEDLINE | ID: mdl-35998183

ABSTRACT

The decision to engage in courtship depends on external cues from potential mates and internal cues related to maturation, health, and experience. Hormones allow for coordinated conveyance of such information to peripheral tissues. Here, we show Ecdysis-Triggering Hormone (ETH) is critical for courtship inhibition after completion of copulation in Drosophila melanogaster. ETH deficiency relieves post-copulation courtship inhibition (PCCI) and increases male-male courtship. ETH appears to modulate perception and attractiveness of potential mates by direct action on primary chemosensory neurons. Knockdown of ETH receptor (ETHR) expression in GR32A-expressing neurons leads to reduced ligand sensitivity and elevated male-male courtship. We find OR67D also is critical for normal levels of PCCI after mating. ETHR knockdown in OR67D-expressing neurons or GR32A-expressing neurons relieves PCCI. Finally, ETHR silencing in the corpus allatum (CA), the sole source of juvenile hormone, also relieves PCCI; treatment with the juvenile hormone analog methoprene partially restores normal post-mating behavior. We find that ETH, a stress-sensitive reproductive hormone, appears to coordinate multiple sensory modalities to guide Drosophila male courtship behaviors, especially after mating.


Subject(s)
Drosophila Proteins , Drosophila , Animals , Courtship , Drosophila/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Juvenile Hormones/metabolism , Male , Neurons/metabolism , Sexual Behavior, Animal/physiology
11.
J Neurosci ; 41(50): 10222-10246, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34753739

ABSTRACT

Food choice, in animals, has been known to change with internal nutritional state and also with variable dietary conditions. To better characterize mechanisms of diet-induced plasticity of food preference in Drosophila melanogaster, we synthesized diets with macronutrient imbalances and examined how food choice and taste sensitivity were modified in flies that fed on these diets. We found that dietary macronutrient imbalances caused compensatory behavioral shifts in both sexes to increase preference for the macronutrient that was scant in the food source, and simultaneously reduce preference for the macronutrient that was enriched. Further analysis with females revealed analogous changes in sweet taste responses in labellar neurons, with increased sensitivity on sugar-reduced diet and decreased sensitivity on sugar-enriched diet. Interestingly, we found differences in the onset of changes in taste sensitivity and behavior, which occur over 1-4 d, in response to dietary sugar reduction or enrichment. To investigate molecular mechanisms responsible for diet-induced taste modulation, we used candidate gene and transcriptome analyses. Our results indicate that signaling via Dop2R is involved in increasing cellular and behavioral sensitivity to sugar as well as in decreasing behavioral sensitivity to amino acids on dietary sugar reduction. On the other hand, cellular and behavioral sensitivity to sugar relies on dilp5 and a decrease in sugar preference following dietary sugar abundance was correlated with downregulation of dilp5 Together, our results suggest that feeding preference for sugar and amino acid can be modulated independently to facilitate food choice that accounts for prior dietary experience.SIGNIFICANCE STATEMENT Animals adjust their feeding preferences based on prior dietary experiences. Here, we find that upon dietary macronutrient deprivation, flies undergo compensatory changes in food preference. The altered preference correlates with changes in peripheral taste sensitivity. While Dop2R mediates changes following dietary sugar reduction, downregulation of dilp5 is associated with changes caused by a sugar-enriched diet. This study contributes to a better understanding of neurophysiological plasticity of the taste system in flies, and its role in facilitating adjustment of foraging behavior based on nutritional requirements.


Subject(s)
Drosophila melanogaster/physiology , Food Preferences/physiology , Nutrients , Signal Transduction/physiology , Animals , Drosophila Proteins/metabolism , Feeding Behavior/physiology , Female , Insulins/metabolism , Male , Receptors, Dopamine D1/metabolism
12.
Elife ; 102021 05 05.
Article in English | MEDLINE | ID: mdl-33949306

ABSTRACT

Chemosensory systems are critical for evaluating the caloric value and potential toxicity of food. While animals can discriminate between thousands of odors, much less is known about the discriminative capabilities of taste systems. Fats and sugars represent calorically potent and attractive food sources that contribute to hedonic feeding. Despite the differences in nutritional value between fats and sugars, the ability of the taste system to discriminate between different rewarding tastants is thought to be limited. In Drosophila, taste neurons expressing the ionotropic receptor 56d (IR56d) are required for reflexive behavioral responses to the medium-chain fatty acid, hexanoic acid. Here, we tested whether flies can discriminate between different classes of fatty acids using an aversive memory assay. Our results indicate that flies are able to discriminate medium-chain fatty acids from both short- and long-chain fatty acids, but not from other medium-chain fatty acids. While IR56d neurons are broadly responsive to short-, medium-, and long-chain fatty acids, genetic deletion of IR56d selectively disrupts response to medium-chain fatty acids. Further, IR56d+ GR64f+ neurons are necessary for proboscis extension response (PER) to medium-chain fatty acids, but both IR56d and GR64f neurons are dispensable for PER to short- and long-chain fatty acids, indicating the involvement of one or more other classes of neurons. Together, these findings reveal that IR56d is selectively required for medium-chain fatty acid taste, and discrimination of fatty acids occurs through differential receptor activation in shared populations of neurons. Our study uncovers a capacity for the taste system to encode tastant identity within a taste category.


Subject(s)
Drosophila/physiology , Fatty Acids/classification , Fatty Acids/metabolism , Neurons/physiology , Taste Perception/physiology , Animals , CRISPR-Cas Systems , Drosophila/genetics , Female , Gene Deletion , Odorants , Sensory Receptor Cells/physiology
13.
J Neurosci ; 2021 May 24.
Article in English | MEDLINE | ID: mdl-34031164

ABSTRACT

Insect gustatory systems comprise multiple taste organs for detecting chemicals that signal palatable or noxious quality. Although much is known about how taste neurons sense various chemicals, many questions remain about how individual taste neurons in each taste organ control feeding. Here, we use the Drosophila pharynx as a model to investigate how taste information is encoded at the cellular level to regulate consumption of sugars and amino acids. We first generate taste-blind animals and establish a critical role for pharyngeal input in food selection. We then investigate feeding behavior of both male and female flies in which only selected classes of pharyngeal neurons are restored via binary choice feeding preference assays as well as Fly Liquid-Food Interaction Counter (FLIC) assays. We find instances of integration as well as redundancy in how pharyngeal neurons control behavioral responses to sugars and amino acids. Additionally, we find that pharyngeal neurons drive sugar feeding preference based on sweet taste but not on nutritional value. Finally, we demonstrate functional specialization of pharyngeal and external neurons using optogenetic activation. Overall, our genetic taste neuron protection system in a taste-blind background provides a powerful approach to elucidate principles of pharyngeal taste coding and demonstrates functional overlap and subdivision among taste neurons.SIGNIFICANCE STATEMENTDietary intake of nutritious chemicals such as sugars and amino acids is essential for an animal's survival. In insects, distinct classes of taste neurons control acceptance or rejection of food sources. Here we develop a genetic system to investigate how individual taste neurons in the Drosophila pharynx encode specific tastants, focusing on sugars and amino acids. By examining flies in which only a single class of taste neurons is active, we find evidence for functional overlap as well as redundancy in responses to sugars and amino acids. We also uncover functional subdivision between pharyngeal and external neurons in driving feeding responses. Overall, we find that different pharyngeal neurons act together to control intake of the two categories of appetitive tastants.

14.
Cell Rep ; 31(2): 107510, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32294446

ABSTRACT

The CO2 receptor in mosquitoes is broadly tuned to detect many diverse odorants. The receptor consists of three subunits (Gr1, Gr2, and Gr3) in mosquitoes but only two subunits in Drosophila: Gr21a (Gr1 ortholog) and Gr63a (Gr3 ortholog). We demonstrate that Gr21a is required for CO2 responses in Drosophila, as has been shown for Gr63a. Next, we generate a Drosophila double mutant for Gr21a and Gr63a, and in this background, we functionally express combinations of Aedes Gr1, Gr2, and Gr3 genes in the CO2 empty neuron. Only two subunits, Gr2 and Gr3, suffice for response to CO2. Addition of Gr1 increases sensitivity to CO2, whereas it decreases the response to pyridine. The inhibitory effect of the antagonist isobutyric acid is observed upon addition of Gr1. Gr1 therefore increases the diversity of ligands of the receptor and modulates the response of the receptor complex.


Subject(s)
Insecta/physiology , Receptors, Cell Surface/genetics , Smell/physiology , Aedes/physiology , Animals , Carbon Dioxide/pharmacology , Drosophila/physiology , Drosophila Proteins/genetics , Insect Proteins/genetics , Insecta/genetics , Odorants/analysis , Receptors, Cell Surface/metabolism
15.
Cell Mol Life Sci ; 77(6): 1087-1101, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31598735

ABSTRACT

The insect gustatory system senses taste information from environmental food substrates and processes it to control feeding behaviors. Drosophila melanogaster has been a powerful genetic model for investigating how various chemical cues are detected at the molecular and cellular levels. In addition to an understanding of how tastants belonging to five historically described taste modalities (sweet, bitter, acid, salt, and amino acid) are sensed, recent findings have identified taste neurons and receptors that recognize tastants of non-canonical modalities, including fatty acids, carbonated water, polyamines, H2O2, bacterial lipopolysaccharide (LPS), ammonia, and calcium. Analyses of response profiles of taste neurons expressing different suites of chemosensory receptors have allowed exploration of taste coding mechanisms in primary sensory neurons. In this review, we present the current knowledge of the molecular and cellular basis of taste detection of various categories of tastants. We also summarize evidence for organotopic and multimodal functions of the taste system. Functional characterization of peripheral taste neurons in different organs has greatly increased our understanding of how insect behavior is regulated by the gustatory system, which may inform development of novel insect pest control strategies.


Subject(s)
Drosophila Proteins/metabolism , Drosophila/physiology , Receptors, Cell Surface/metabolism , Sensory Receptor Cells/metabolism , Taste , Animals , Drosophila/anatomy & histology , Drosophila/cytology , Drosophila/genetics , Drosophila Proteins/analysis , Drosophila Proteins/genetics , Gene Expression , Receptors, Cell Surface/analysis , Receptors, Cell Surface/genetics , Sensory Receptor Cells/cytology
16.
Cell Rep ; 29(4): 961-973.e4, 2019 10 22.
Article in English | MEDLINE | ID: mdl-31644916

ABSTRACT

Taste drives appropriate food preference and intake. In Drosophila, taste neurons are housed in both external and internal organs, but the latter have been relatively underexplored. Here, we report that Poxn mutants with a minimal taste system of pharyngeal neurons can avoid many aversive tastants, including bitter compounds, acid, and salt, suggesting that pharyngeal taste is sufficient for rejecting intake of aversive compounds. Optogenetic activation of selected pharyngeal bitter neurons during feeding events elicits changes in feeding parameters that can suppress intake. Functional dissection experiments indicate that multiple classes of pharyngeal neurons are involved in achieving behavioral avoidance, by virtue of being inhibited or activated by aversive tastants. Tracing second-order pharyngeal circuits reveals two main relay centers for processing pharyngeal taste inputs. Together, our results suggest that the pharynx can control the ingestion of harmful compounds by integrating taste input from different classes of pharyngeal neurons.


Subject(s)
Avoidance Learning , Chemoreceptor Cells/metabolism , Drosophila Proteins/metabolism , Nerve Tissue Proteins/metabolism , Paired Box Transcription Factors/metabolism , Taste , Animals , Aversive Agents/pharmacology , Chemoreceptor Cells/drug effects , Chemoreceptor Cells/physiology , Drosophila Proteins/genetics , Drosophila melanogaster , Food Preferences , Nerve Tissue Proteins/genetics , Paired Box Transcription Factors/genetics , Pharynx/cytology , Taste Perception
17.
J Exp Biol ; 222(Pt 19)2019 10 01.
Article in English | MEDLINE | ID: mdl-31511344

ABSTRACT

Taste is essential for animals to evaluate food quality and make important decisions about food choice and intake. How complex brains process sensory information to produce behavior is an essential question in the field of sensory neurobiology. Currently, little is known about higher-order taste circuits in the brain as compared with those of other sensory systems. Here, we used the common vinegar fly, Drosophila melanogaster, to screen for candidate neurons labeled by different transgenic GAL4 lines in controlling feeding behaviors. We found that activation of one line (VT041723-GAL4) produces 'proboscis holding' behavior (extrusion of the mouthpart without withdrawal). Further analysis showed that the proboscis holding phenotype indicates an aversive response, as flies pre-fed with either sucrose or water prior to neuronal activation exhibited regurgitation. Anatomical characterization of VT041723-GAL4-labeled neurons suggests that they receive sensory input from peripheral taste neurons. Overall, our study identifies a subset of brain neurons labeled by VT041723-GAL4 that may be involved in a taste circuit that controls regurgitation.


Subject(s)
Brain/physiology , Drosophila melanogaster/physiology , Neurons/physiology , Animals , Animals, Genetically Modified , Behavior, Animal , Drosophila melanogaster/genetics , Female , Green Fluorescent Proteins/metabolism , Male , Optogenetics , Pharynx/innervation , Sex Characteristics , Synapses/physiology , Taste/physiology , Thermogenesis/physiology
18.
Front Cell Neurosci ; 12: 382, 2018.
Article in English | MEDLINE | ID: mdl-30405359

ABSTRACT

In Drosophila, Pox-neuro (Poxn) is a member of the Paired box (Pax) gene family that encodes transcription factors with characteristic paired DNA-binding domains. During embryonic development, Poxn is expressed in sensory organ precursor (SOP) cells of poly-innervated external sensory (p-es) organs and is important for specifying p-es organ identity (chemosensory) as opposed to mono-innervated external sensory (m-es) organs (mechanosensory). In Poxn mutants, there is a transformation of chemosensory bristles into mechanosensory bristles. As a result, these mutants have often been considered to be entirely taste-blind, and researchers have used them in this capacity to investigate physiological and behavioral functions that act in a taste-independent manner. However, recent studies show that only external taste bristles are transformed in Poxn mutants whereas all internal pharyngeal taste neurons remain intact, raising concerns about interpretations of experimental results using Poxn mutants as taste-blind flies. In this review, we summarize the value of Poxn mutants in advancing our knowledge of taste-enriched genes and feeding behaviors, and encourage revisiting some of the conclusions about taste-independent nutrient-sensing mechanisms derived from these mutants. Lastly, we highlight that Poxn mutant flies remain a valuable tool for probing the function of the relatively understudied pharyngeal taste neurons in sensing meal properties and regulating feeding behaviors.

19.
Cell Res ; 28(11): 1048-1049, 2018 11.
Article in English | MEDLINE | ID: mdl-30310135
20.
Cell Rep ; 21(10): 2978-2991, 2017 Dec 05.
Article in English | MEDLINE | ID: mdl-29212040

ABSTRACT

The Drosophila pharyngeal taste organs are poorly characterized despite their location at important sites for monitoring food quality. Functional analysis of pharyngeal neurons has been hindered by the paucity of molecular tools to manipulate them, as well as their relative inaccessibility for neurophysiological investigations. Here, we generate receptor-to-neuron maps of all three pharyngeal taste organs by performing a comprehensive chemoreceptor-GAL4/LexA expression analysis. The organization of pharyngeal neurons reveals similarities and distinctions in receptor repertoires and neuronal groupings compared to external taste neurons. We validate the mapping results by pinpointing a single pharyngeal neuron required for feeding avoidance of L-canavanine. Inducible activation of pharyngeal taste neurons reveals functional differences between external and internal taste neurons and functional subdivision within pharyngeal sweet neurons. Our results provide roadmaps of pharyngeal taste organs in an insect model system for probing the role of these understudied neurons in controlling feeding behaviors.


Subject(s)
Drosophila Proteins/metabolism , Pharynx/metabolism , Animals , Canavanine/metabolism , Drosophila , Receptors, Cell Surface/metabolism , Sensory Receptor Cells/metabolism , Taste/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...