Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 15: 1384691, 2024.
Article in English | MEDLINE | ID: mdl-38989016

ABSTRACT

Bacillus atrophaeus HAB-5 is a plant growth-promoting rhizobacterium (PGPR) that exhibits several biotechnological traits, such as enhancing plant growth, colonizing the rhizosphere, and engaging in biocontrol activities. In this study, we conducted whole-genome sequencing of B. atrophaeus HAB-5 using the single-molecule real-time (SMRT) sequencing platform by Pacific Biosciences (PacBio; United States), which has a circular chromosome with a total length of 4,083,597 bp and a G + C content of 44.21%. The comparative genomic analysis of B. atrophaeus HAB-5 with other strains, Bacillus amyloliquefaciens DSM7, B. atrophaeus SRCM101359, Bacillus velezensis FZB42, B. velezensis HAB-2, and Bacillus subtilis 168, revealed that these strains share 2,465 CDSs, while 599 CDSs are exclusive to the B. atrophaeus HAB-5 strain. Many gene clusters in the B. atrophaeus HAB-5 genome are associated with the production of antimicrobial lipopeptides and polypeptides. These gene clusters comprise distinct enzymes that encode three NRPs, two Transat-Pks, one terpene, one lanthipeptide, one T3PKS, one Ripp, and one thiopeptide. In addition to the likely IAA-producing genes (trpA, trpB, trpC, trpD, trpE, trpS, ywkB, miaA, and nadE), there are probable genes that produce volatile chemicals (acoA, acoB, acoR, acuB, and acuC). Moreover, HAB-5 contained genes linked to iron transportation (fbpA, fetB, feuC, feuB, feuA, and fecD), sulfur metabolism (cysC, sat, cysK, cysS, and sulP), phosphorus solubilization (ispH, pstA, pstC, pstS, pstB, gltP, and phoH), and nitrogen fixation (nif3-like, gltP, gltX, glnR, glnA, nadR, nirB, nirD, nasD, narl, narH, narJ, and nark). In conclusion, this study provides a comprehensive genomic analysis of B. atrophaeus HAB-5, pinpointing the genes and genomic regions linked to the antimicrobial properties of the strain. These findings advance our knowledge of the genetic basis of the antimicrobial properties of B. atrophaeus and imply that HAB-5 may employ a variety of commercial biopesticides and biofertilizers as a substitute strategy to increase agricultural output and manage a variety of plant diseases.

2.
Pestic Biochem Physiol ; 163: 102-107, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31973845

ABSTRACT

Anthracnose is a leaf spot, blossom blight, or fruit rot disease caused by Colletotrichum gloeosporioides (Penz.). It is the most prevalent disease in mango-growing countries worldwide. Lipopeptides, such as those in the iturin family, account for the majority of antifungal secondary metabolites in Bacillus subtilis, Bacillus amyloliquefaciens and Bacillus velezensis, and includes bacillomycin D. Thus far, the mechanism of bacillomycin D's activity has not been clear. In this study, bacillomycin D was isolated from B. velezensis HN-2, which strongly inhibits C. gloeosporioides (Penz.). The median inhibitory concentration of bacillomycin D was 2.162 µg/mL, causing deformation and damage to C. gloeosporioides (Penz.). Bacillomycin D showed more potent activity against C. gloeosporioides (Penz.) than two common fungicides prochloraz and mancozeb. Scanning and transmission electron microscopy revealed that bacillomycin D could injure the cell wall and cell membrane of the hyphae and spores of C. gloeosporioides (Penz.), and the cytoplasm and organelles inside the cell were exuded and formed empty holes. This research clarifies the mechanism underlying bacillomycin D antifungal activity and reveals its high potential as a biopesticide to control phytopathogens.


Subject(s)
Bacillus , Colletotrichum , Antifungal Agents , Antimicrobial Cationic Peptides , Plant Diseases
3.
Pestic Biochem Physiol ; 156: 170-176, 2019 May.
Article in English | MEDLINE | ID: mdl-31027577

ABSTRACT

The use of fungicides to control plant diseases creates a potential health risk. One alternative to this problem is the biological control, which has been succesfully applied to control plant diseases. Bacillus atrophaeus HAB-5 exhibits a high inhibitory acitivities against different fungal pathogens and suppresses them. The aim of current studies is to produce and identify the antifungal compounds produced by the strain HAB-5. We found that the submerge fermentation harvested from Luria-Bertani (LB) medium had the highest activity against Colletotrichum gloeosporioides. The petroleum ether crude extract was strongly bioactive and its activity was stable after heat treatment, pH treatment, illuminated light as well as ultra violet exposition. The antifungal compounds were purified using gel chromatography column. Based on Gas Chromatography-Mass Spectrometry (GC-MS) analysis, nineteen different volatile organic compounds (VOCs) were identified included the range of alkanes, alkenes, alcohols, and organics acid. Among these identified compounds, Chloroacetic acid, tetradecyl esters followed by Octadecane and Hexadecanoic acid, methyl ester showed antifungal activity against C. gloeosporioides. Our results clearly showed Chloroacetic acid, tetradecyl esters; Octadecane and Hexadecanoic acid, methyl ester are key inhibitory compounds produced by Bacillus atrophaeus HAB-5 against C. gloeosporioides.


Subject(s)
Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Bacillus/chemistry , Colletotrichum/drug effects , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/pharmacology , Fusarium/drug effects , Microbial Sensitivity Tests , Plant Diseases/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...