Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Nutr ; 153(4): 1063-1074, 2023 04.
Article in English | MEDLINE | ID: mdl-36868512

ABSTRACT

BACKGROUND: Infant formula (IF) has to provide at least the same amount of amino acids (AAs) as human milk (HM). AA digestibility in HM and IF was not studied extensively, with no data available for tryptophan digestibility. OBJECTIVES: The present study aimed to measure the true ileal digestibility (TID) of total nitrogen and AAs in HM and IF to estimate AA bioavailability using Yucatan mini-piglets as an infant model. METHODS: Twenty-four 19-day-old piglets (males and females) received either HM or IF for 6 days or a protein-free diet for 3 days, with cobalt-EDTA as an indigestible marker. Diets were fed hourly over 6 h before euthanasia and digesta collection. Total N, AA, and marker contents in diets and digesta were measured to determine the TID. Unidimensional statistical analyses were conducted. RESULTS: Dietary N content was not different between HM and IF, while true protein was lower in HM (-4 g/L) due to a 7-fold higher non-protein N content in HM. The TID of total N was lower (P < 0.001) for HM (91.3 ± 1.24%) than for IF (98.0 ± 0.810%), while the TID of amino acid nitrogen (AAN) was not different (average of 97.4 ± 0.655%, P = 0.272). HM and IF had similar (P > 0.05) TID for most of the AAs including tryptophan (96.7 ± 0.950%, P = 0.079), except for some AAs (lysine, phenylalanine, threonine, valine, alanine, proline, and serine), with small significant difference (P < 0.05). The first limiting AA was the aromatic AAs, and the digestible indispensable AA score (DIAAS) was higher for HM (DIAASHM = 101) than for IF (DIAASIF = 83). CONCLUSION: HM, compared to IF, had a lower TID for total N only, whereas the TID of AAN and most AAs, including Trp, was high and similar. A larger proportion of non-protein N is transferred to the microbiota with HM, which is of physiological relevance, although this fraction is poorly considered for IF manufacturing.


Subject(s)
Amino Acids , Milk, Human , Male , Infant, Newborn , Infant , Female , Humans , Animals , Swine , Amino Acids/metabolism , Milk, Human/chemistry , Infant Formula/chemistry , Tryptophan/metabolism , Nitrogen/metabolism , Digestion/physiology , Ileum/metabolism , Diet , Diet, Protein-Restricted , Animal Feed/analysis
2.
Front Nutr ; 10: 1123162, 2023.
Article in English | MEDLINE | ID: mdl-36925960

ABSTRACT

Introduction: In the present study, we examined the effects of a supplementation with a sensory functional ingredient (FI, D16729, Phodé, France) containing vanillin, furaneol, diacetyl and a mixture of aromatic fatty acids on the behavioural and brain responses of juvenile pigs to acute stress. Methods: Twenty-four pigs were fed from weaning with a standard granulated feed supplemented with the functional ingredient D16729 (FS animals, N = 12) or a control formulation (CT animals, N = 12). After a feed transition (10 days after weaning), the effects of FI were investigated on eating behaviour during two-choice feed preference tests. Emotional reactivity to acute stress was then investigated during openfield (OF), novel suddenly moving object (NSO), and contention tests. Brain responses to the FI and the two different feeds' odour, as well as to an acute pharmacological stressor (injection of Synacthen®) were finally investigated with functional magnetic resonance imaging (fMRI). Results: FS animals tended to spend more time above the functional feed (p = 0.06) and spent significantly more time at the periphery of the arena during NSO (p < 0.05). Their latency to contact the novel object was longer and they spent less time exploring the object compared to CT animals (p < 0.05 for both). Frontostriatal and limbic responses to the FI were influenced by previous exposure to FI, with higher activation in FS animals exposed to the FI feed odor compared to CT animals exposed to a similarly familiar feed odor without FI. The pharmacological acute stress provoked significant brain activations in the prefrontal and thalamic areas, which were alleviated in FS animals that also showed more activity in the nucleus accumbens. Finally, the acute exposure to FI in naive animals modulated their brain responses to acute pharmacological stress. Discussion: Overall, these results showed how previous habituation to the FI can modulate the brain areas involved in food pleasure and motivation while alleviating the brain responses to acute stress.

3.
Front Nutr ; 9: 976042, 2022.
Article in English | MEDLINE | ID: mdl-36211510

ABSTRACT

Early nutrition plays a dominant role in infant development and health. It is now understood that the infant diet impacts the gut microbiota and its relationship with gut function and brain development. However, its impact on the microbiota-gut-brain axis has not been studied in an integrative way. The objective here was to evaluate the effects of human milk (HM) or cow's milk based infant formula (IF) on the relationships between gut microbiota and the collective host intestinal-brain axis. Eighteen 10-day-old Yucatan mini-piglets were fed with HM or IF. Intestinal and fecal microbiota composition, intestinal phenotypic parameters, and the expression of genes involved in several gut and brain functions were determined. Unidimensional analyses were performed, followed by multifactorial analyses to evaluate the relationships among all the variables across the microbiota-gut-brain axis. Compared to IF, HM decreased the α-diversity of colonic and fecal microbiota and modified their composition. Piglets fed HM had a significantly higher ileal and colonic paracellular permeability assessed by ex vivo analysis, a lower expression of genes encoding tight junction proteins, and a higher expression of genes encoding pro-inflammatory and anti-inflammatory immune activity. In addition, the expression of genes involved in endocrine function, tryptophan metabolism and nutrient transport was modified mostly in the colon. These diet-induced intestinal modifications were associated with changes in the brain tissue expression of genes encoding the blood-brain barrier, endocrine function and short chain fatty acid receptors, mostly in hypothalamic and striatal areas. The integrative approach underlined specific groups of bacteria (Veillonellaceae, Enterobacteriaceae, Lachnospiraceae, Rikenellaceae, and Prevotellaceae) associated with changes in the gut-brain axis. There is a clear influence of the infant diet, even over a short dietary intervention period, on establishment of the microbiota-gut-brain axis.

4.
Glia ; 66(4): 762-776, 2018 04.
Article in English | MEDLINE | ID: mdl-29226549

ABSTRACT

The detection of food odors by the olfactory system, which plays a key role in regulating food intake and elaborating the hedonic value of food, is reciprocally influenced by the metabolic state. Fasting increases olfactory performance, notably by increasing the activity of olfactory bulb (OB) neurons. The glutamatergic synapses between olfactory sensory neurons and mitral cells in the OB glomeruli are regulated by astrocytes, periglomerular neurons, and centrifugal afferents. We compared the expansion of astroglial processes by quantifying GFAP-labeled areas in fed and fasted rats to see whether OB glomerular astrocytes are involved in the metabolic sensing and adaptation of the olfactory system. Glomerular astroglial spreading was much greater in all OB regions of rats fasted for 17 hr than in controls. Intra-peritoneal administration of the anorexigenic peptide PYY3-36 or glucose in 17 hr-fasted rats respectively decreased their food intake or restored their glycemia, and reversed the fasting-induced astroglial spreading. Direct application of the orexigenic peptides ghrelin or NPY to OB slices increased astroglial spreading, whereas PYY3-36 resulted in astroglial retraction, in agreement with the in vivo effects of fasting and satiety on glomerular astrocytes. Thus the morphological plasticity of OB glomerular astrocytes depends on the metabolic state of the rats and is influenced by peptides that regulate food intake. This plasticity may be part of the mechanism by which the olfactory system adapts to food intake.


Subject(s)
Astrocytes/cytology , Astrocytes/physiology , Fasting/physiology , Neuronal Plasticity/physiology , Olfactory Bulb/cytology , Olfactory Bulb/physiology , Animals , Central Nervous System Agents/administration & dosage , Eating/physiology , Ghrelin/administration & dosage , Ghrelin/metabolism , Glial Fibrillary Acidic Protein/metabolism , Glucose/administration & dosage , Glucose/metabolism , Glycemic Index , Male , Neuropeptide Y/administration & dosage , Neuropeptide Y/metabolism , Peptide Fragments/administration & dosage , Peptide Fragments/metabolism , Peptide YY/administration & dosage , Peptide YY/metabolism , Rats, Wistar , Tissue Culture Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...