Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 15930, 2023 09 23.
Article in English | MEDLINE | ID: mdl-37741892

ABSTRACT

Human monkeypox is a very unusual virus that can devastate society. Early identification and diagnosis are essential to treat and manage an illness effectively. Human monkeypox disease detection using deep learning models has attracted increasing attention recently. The virus that causes monkeypox may be passed to people, making it a zoonotic illness. The latest monkeypox epidemic has hit more than 40 nations. Computer-assisted approaches using Deep Learning techniques for automatically identifying skin lesions have shown to be a viable alternative in light of the fast proliferation and ever-growing problems of supplying PCR (Polymerase Chain Reaction) Testing in places with limited availability. In this research, we introduce a deep learning model for detecting human monkeypoxes that is accurate and resilient by tuning its hyper-parameters. We employed a mixture of convolutional neural networks and transfer learning strategies to extract characteristics from medical photos and properly identify them. We also used hyperparameter optimization strategies to fine-tune the Model and get the best possible results. This paper proposes a Yolov5 model-based method for differentiating between chickenpox and Monkeypox lesions on skin pictures. The Roboflow skin lesion picture dataset was subjected to three different hyperparameter tuning strategies: the SDG optimizer, the Bayesian optimizer, and Learning without Forgetting. The proposed Model had the highest classification accuracy (98.18%) when applied to photos of monkeypox skin lesions. Our findings show that the suggested Model surpasses the current best-in-class models and may be used in clinical settings for actual Human Monkeypox disease detection and diagnosis.


Subject(s)
Chickenpox , Deep Learning , Epidemics , Mpox (monkeypox) , Humans , Bayes Theorem , Mpox (monkeypox)/diagnosis
2.
Front Public Health ; 10: 892371, 2022.
Article in English | MEDLINE | ID: mdl-35570979

ABSTRACT

Machine learning algorithms are excellent techniques to develop prediction models to enhance response and efficiency in the health sector. It is the greatest approach to avoid the spread of hepatitis C, especially injecting drugs, is to avoid these behaviors. Treatments for hepatitis C can cure most patients within 8 to 12 weeks, so being tested is critical. After examining multiple types of machine learning approaches to construct the classification models, we built an AI-based ensemble model for predicting Hepatitis C disease in patients with the capacity to predict advanced fibrosis by integrating clinical data and blood biomarkers. The dataset included a variety of factors related to Hepatitis C disease. The training data set was subjected to three machine-learning approaches and the validated data was then used to evaluate the ensemble learning-based prediction model. The results demonstrated that the proposed ensemble learning model has been observed ad more accurate compared to the existing Machine learning algorithms. The Multi-layer perceptron (MLP) technique was the most precise learning approach (94.1% accuracy). The Bayesian network was the second-most accurate learning algorithm (94.47% accuracy). The accuracy improved to the level of 95.59%. Hepatitis C has a significant frequency globally, and the disease's development can result in irreparable damage to the liver, as well as death. As a result, utilizing AI-based ensemble learning model for its prediction is advantageous in curbing the risks and improving treatment outcome. The study demonstrated that the use of ensemble model presents more precision or accuracy in predicting Hepatitis C disease instead of using individual algorithms. It also shows how an AI-based ensemble model could be used to diagnose Hepatitis C disease with greater accuracy.


Subject(s)
Artificial Intelligence , Hepatitis C , Bayes Theorem , Hepatitis C/diagnosis , Humans , Machine Learning , Neural Networks, Computer
SELECTION OF CITATIONS
SEARCH DETAIL
...