Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
Pathol Res Pract ; 260: 155444, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38986361

ABSTRACT

Lung cancer is still a global health challenge in terms of high incidence, morbidity, and mortality. Recent scientific studies have determined that pyroptosis, a highly inflammatory form of programmed cell death, can be identified as a potential lung cancer therapeutic target. The NLRP3 inflammasome acts as a critical mediator in this process and, upon activation, activates multiprotein complex formation as well as caspase-1 activation. This process, triggered by a release of pro-inflammatory cytokines, results in pyroptotic cell death. Also, the relationship between the NLRP3 inflammasome and lung cancer was justified by its influence on tumour growth or metastasis. The molecular pathways produce progenitive mediators and remake the tissue. Finally, targeting NLRP3 inflammasome for pyroptosis induction and inhibition of its activation appears to be a promising lung cancer treatment approach. This technique makes cancer treatment more promising and personalized. This review explores the role of NLRP3 inflammasome activation and its possibilities in lung cancer treatment.

2.
Noncoding RNA Res ; 9(2): 277-287, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38505309

ABSTRACT

The intricate molecular landscape of cancer pathogenesis continues to captivate researchers worldwide, with Circular RNAs (circRNAs) emerging as pivotal players in the dynamic regulation of biological functions. The study investigates the elusive link between circRNAs and the Transforming Growth Factor-ß (TGF-ß) signalling pathway, exploring their collective influence on cancer progression and metastasis. Our comprehensive investigation begins by profiling circRNA expression patterns in diverse cancer types, revealing a repertoire of circRNAs intricately linked to the TGF-ß pathway. Through integrated bioinformatics analyses and functional experiments, we elucidate the specific circRNA-mRNA interactions that modulate TGF-ß signalling, unveiling the regulatory controls governing this crucial pathway. Furthermore, we provide compelling evidence of the impact of circRNA-mediated TGF-ß modulation on key cellular processes, including epithelial-mesenchymal transition (EMT), migration, and cell proliferation. In addition to their mechanistic roles, circRNAs have shown promise as diagnostic and prognostic biomarkers, as well as potential molecular targets for cancer therapy. Their ability to modulate critical pathways, such as the TGF-ß signalling axis, underscores their significance in cancer biology and clinical applications. The intricate interplay between circRNAs and TGF-ß is dissected, uncovering novel regulatory circuits that contribute to the complexity of cancer biology. This review unravels a previously unexplored dimension of carcinogenesis, emphasizing the crucial role of circRNAs in shaping the TGF-ß signalling landscape.

4.
Mini Rev Med Chem ; 22(13): 1772-1788, 2022.
Article in English | MEDLINE | ID: mdl-35049431

ABSTRACT

Bridged peptide macrobicycles (BPMs) from natural resources belong to types of compounds that are not investigated fully in terms of their formation, pharmacological potential, and stereo- chemical properties. This division of biologically active congeners with multiple circular rings has merits over other varieties of peptide molecules. BPMs form one of the most hopeful grounds for the establishment of drugs because of their close resemblance and biocompatibility with proteins, and these bio-actives are debated as feasible, realistic tools in diverse biomedical applications. Despite huge potential, poor metabolic stability and cell permeability limit the therapeutic success of macrocyclic peptides. In this review, we have comprehensively explored major bicyclic peptides sourced from plants and mushrooms, including ßs-leucyl-tryptophano-histidine bridged and tryptophanocysteine bridged peptide macrobicycles. The unique structural features, structure-activity relationship, synthetic routes, bioproperties, and therapeutic potential of the natural BPMs are also discussed.


Subject(s)
Celosia , Amanita/metabolism , Celosia/metabolism , Peptides/chemistry , Peptides, Cyclic/chemistry
5.
Curr Org Synth ; 19(2): 267-278, 2022 03 03.
Article in English | MEDLINE | ID: mdl-34636301

ABSTRACT

AIMS: The present investigation is targeted towards the synthesis of a novel analogue of a natural peptide of marine origin. BACKGROUND: Marine sponges are enriched with bioactive secondary metabolites, especially circu-lar peptides. Heterocycles are established organic compounds with potential biological value. Tak-ing into consideration the bio-properties of heterocycles and marine sponge-derived natural pep-tides, an effort was made for the synthesis of a heterocyclic analogue of a natural cyclopeptide. OBJECTIVE: A heterocyclic analogue of a sponge-derived proline-containing cyclic peptide, rolloam-ide A, was synthesized by interaction of Boc-protected L-histidinyl-L-prolyl-L-valine and L-prolyl-L-leucyl-L-prolyl-L-isoleucine methyl ester and compared with synthetic rolloamide A with bioac-tivity against bacteria, fungi, and earthworms. METHODS: The synthesis of cycloheptapeptide was accomplished employing the liquid phase method. The larger peptide segment was prepared by interaction of Boc-protected L-prolyl-L-leu-cine with L-prolyl-L-isoleucine methyl ester. Similarly, the tripeptide unit was synthesized from Boc-protected L-histidinyl-L-proline with L-valine ester. The linear heptapeptide segment (7) was cyclized by utilizing pentafluorophenyl (pfp) ester, and the structure was elucidated by elemental and spectral (IR, 1H/13C NMR, MS) analysis. The peptide was also screened for diverse bioactivities such as antibacterial, antifungal, and potential against earthworms and cytotoxicity. RESULTS: The novel cyclooligopeptide was synthesized with 84% yield by making use of car-bodiimides. The synthesized cyclopeptide exhibited significant cytotoxicity against two cell lines. In addition, promising antifungal and antihelmintic properties were observed for newly synthesized heterocyclic peptide derivative (8) against dermatophytes and three earthworm species at 6 µg/mL and 2 mg/mL, respectively. CONCLUSION: Solution-phase technique employing carbodiimide chemistry was established to be promising for synthesizing the cycloheptapeptide derivative (8), and C5H5N was proved to be a better base for heptapeptide circling when compared to N-methylmorpholine and triethylamine.


Subject(s)
Oligochaeta , Porifera , Animals , Antifungal Agents , Esters , Microbial Sensitivity Tests , Peptides/pharmacology , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Porifera/chemistry , Proline , Valine
6.
Crit Rev Ther Drug Carrier Syst ; 38(6): 49-103, 2021.
Article in English | MEDLINE | ID: mdl-34587429

ABSTRACT

Nanocarriers are nanostructured vehicles employed to deliver anticancer drugs to the targeted tumor sites in the body. Nanocarriers have been successfully employed to circumvent certain limitations of conventional anticancer drug delivery while providing greater bioavailability, prolonged circulation time and higher tumor accumulation for enhanced therapeutic outcomes in cancer treatment. Nanocarriers are also responsive to functionalization to tailor their pharmaco-kinetics and achieve enhanced therapeutic outcomes in cancer therapy. Among organic, inorganic and hybrid type, several nanocarriers have gained approval for use in cancer patients, while many more are under clinical development. For the last two decades, cancer immunotherapy-based advanced targeting approaches such as monoclonal antibodies, antibody drug conjugates and immune checkpoint inhibitors that utilize human immune system functions have vastly developed which furnish better treatment options in several intractable cancers compared with traditional cancer therapies. This review discusses the imperative role of tumor vasculature in passive and active targeting of anticancer drugs using organic and inorganic nanocarriers and the current research efforts underway. The advanced targeting approaches for treatment of various cancers and their most recent clinical development scenario have been comprehensively explored. Further, potential challenges associated with each type of nanocarrier, and their translational obstacles are addressed.


Subject(s)
Antineoplastic Agents , Nanoparticles , Neoplasms , Antineoplastic Agents/therapeutic use , Drug Carriers/therapeutic use , Drug Delivery Systems , Humans , Neoplasms/drug therapy
7.
Int J Biol Macromol ; 187: 742-754, 2021 Sep 30.
Article in English | MEDLINE | ID: mdl-34310997

ABSTRACT

A surface modulated biodegradable transdermal strategy has been exploited for improving the biopharmaceutical properties of Temozolomide augmented in Poly Lactic-co-glycolic acid (PLGA) chitosan double walled nanogel (PCNGL). The PCNGL was synthesized by dual approach methodology showing consistent nanosize particle range of 210 nm and PDI 0.325 ± 0.43 with cationic zeta potential values +29.34 ± 0.79 mV. The PCNGL showed qualitative endothermic & exothermic temperature dependent degradation peaks by thermogravimetry analysis. Blood hemolysis and coagulation assay showed 3.37 ± 0.19 as hemolytic ratio, validating biologically safe margin for transdermal delivery. The in vitro drug release showed 85% transdermal release at slightly acidic pH mimicking skin microenvironment. The ex vivo studies displayed noteworthy penetration potential validated by concentration depth assay and confocal laser scanning microscopy, exhibiting 80% Temozolomide uptake in porcine epidermal tissue. The current research demonstrated the biodegradable controlled delivery of chemotherapeutic Temozolomide leading to biologically safe transdermal therapy.


Subject(s)
Antineoplastic Agents, Alkylating/chemistry , Drug Carriers , Nanogels , Poloxamer/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Temozolomide/chemistry , Administration, Cutaneous , Animals , Antineoplastic Agents, Alkylating/administration & dosage , Antineoplastic Agents, Alkylating/metabolism , Delayed-Action Preparations , Drug Compounding , Drug Liberation , Epidermis/metabolism , Hydrogen-Ion Concentration , Nanotechnology , Skin Absorption , Surface Properties , Sus scrofa , Temozolomide/administration & dosage , Temozolomide/metabolism
8.
Curr Med Chem ; 28(38): 7887-7909, 2021.
Article in English | MEDLINE | ID: mdl-34042024

ABSTRACT

BACKGROUND: Peptides and peptide-based therapeutics are biomolecules that demarcate a significant chemical space to bridge small molecules with biological therapeutics, such as antibodies, recombinant proteins, and protein domains. INTRODUCTION: Cyclooligopeptides and depsipeptides, particularly cyanobacteria-derived thiazoline-based polypeptides (CTBCs), exhibit a wide array of pharmacological activities due to their unique structural features and interesting bioactions, which furnish them as promising leads for drug discovery. METHODS: In the present study, we comprehensively review the natural sources, distinguishing chemistries, and pertinent bioprofiles of CTBCs. We analyze their structural peculiarities counting the mode of actions for biological portrayals which render CTBCs as indispensable sources for emergence of prospective peptide-based therapeutics. In this milieu, metal organic frameworks and their biomedical applications are also briefly discussed. To boot, the challenges, approaches, and clinical status of peptide-based therapeutics are conferred. RESULTS: Based on these analyses, CTBCs can be appraised as ideal drug targets that have always remained a challenge for traditional small molecules, like those involved in protein- protein interactions or to be developed as potential cancer-targeting nanomaterials. Cyclization-induced reduced conformational freedom of these cyclooligopeptides contribute to improved metabolic stability and binding affinity to their molecular targets. Clinical success of several cyclic peptides provokes the large library-screening and synthesis of natural product-like cyclic peptides to address the unmet medical needs. CONCLUSION: CTBCs can be considered as the most promising lead compounds for drug discovery. Adopting the amalgamation of advanced biological and biopharmaceutical strategies might endure these cyclopeptides to be prospective biomolecules for futuristic therapeutic applications in the coming times.


Subject(s)
Biological Products , Cyanobacteria , Depsipeptides , Biological Products/pharmacology , Depsipeptides/pharmacology , Humans , Peptides, Cyclic , Prospective Studies
9.
Arch Pharm (Weinheim) ; 354(8): e2100034, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33913195

ABSTRACT

Among peptide-based drugs, naturally occurring bicyclic compounds have been established as molecules with unique therapeutic potential. The diverse pharmacological activities associated with bicyclic peptides from marine tunicates, sponges, and bacteria render them suitable to be employed as effective surrogate between complex and small therapeutic moieties. Bicyclic peptides possess greater conformational rigidity and higher metabolic stability as compared with linear and monocyclic peptides. The antibody-like affinity and specificity of bicyclic peptides enable their binding to the challenging drug targets. Bridged macrobicyclic peptides from natural marine resources represent an underexplored class of molecules that provides promising platforms for drug development owing to their biocompatibility, similarity, and chemical diversity to proteins. The present review explores major marine-derived bicyclic peptides including disulfide-bridged, histidinotyrosine-bridged, or histidinoalanine-bridged macrobicyclic peptides along with their structural characteristics, synthesis, structure-activity relationship, and bioproperties.The comparison of these macrobicyclic congeners with linear/monocyclic peptides along with their therapeutic potential are also briefly discussed.


Subject(s)
Aquatic Organisms/metabolism , Biological Products/pharmacology , Peptides, Cyclic/pharmacology , Animals , Biological Products/chemical synthesis , Biological Products/chemistry , Drug Development , Humans , Peptides, Cyclic/chemical synthesis , Peptides, Cyclic/chemistry , Structure-Activity Relationship
10.
Eur J Med Chem ; 218: 113406, 2021 Jun 05.
Article in English | MEDLINE | ID: mdl-33823395

ABSTRACT

The cyanobacterial oligopeptides are recognized for being highly selective, efficacious and relatively safer compounds with diverse bioactivities. Azoline-based natural compounds consist of heterocycles which are reduced analogues of five-membered heterocyclic azoles. Among other varieties of azoline-based natural compounds, the heteropeptides bearing oxazoline or thiazoline heterocycles possess intrinsic structural properties with captivating pharmacological profiles, representing excellent templates for the design of novel therapeutics. The specificity of heteropeptides has been translated into prominent safety, tolerability, and efficacy profiles in humans. These peptidic congeners serve as ideal intermediary between small molecules and biopharmaceuticals based on their typically low production complexity compared to the protein-based biopharmaceuticals. The distinct bioproperties and unique structures render these heteropeptides one of the most promising lead compounds for drug discovery. The high degree of chemical diversity in cyanobacterial secondary metabolites may constitute a prolific source of new entities leading to the development of new pharmaceuticals. This review focuses on the azoline-based natural oligopeptides with emphasis on distinctive structural features, stereochemical aspects, biological activities, structure activity relationship, synthetic and biosynthetic aspects as well as mode of action of cyanobacteria-derived peptides.


Subject(s)
Antineoplastic Agents/pharmacology , Biological Products/pharmacology , Cyanobacteria/chemistry , Oligopeptides/pharmacology , Oxazoles/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Biological Products/chemical synthesis , Biological Products/chemistry , Cell Proliferation/drug effects , HeLa Cells , Humans , Oligopeptides/chemical synthesis , Oligopeptides/chemistry , Oxazoles/chemical synthesis , Oxazoles/chemistry , Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors , Proto-Oncogene Proteins c-mdm2/metabolism , Tumor Suppressor Protein p53/antagonists & inhibitors , Tumor Suppressor Protein p53/metabolism
11.
Biology (Basel) ; 10(3)2021 Feb 25.
Article in English | MEDLINE | ID: mdl-33668707

ABSTRACT

Evidence suggests that stem cells exert regenerative potential via the release of extracellular vesicles. Mesenchymal stem cell extracellular vesicles (MSCEVs) offer therapeutic benefits for various pathophysiological ailments by restoring tissues. Facts suggest that MSCEV action can be potentiated by modifying the mesenchymal stem cells culturing methodology and bioengineering EVs. Limited clinical trials of MSCEVs have questioned their superiority, culturing quality, production scale-up and isolation, and administration format. Translation of preclinically successful MSCEVs into a clinical platform requires paying attention to several critical matters, such as the production technique, quantification/characterization, pharmacokinetics/targeting/transfer to the target site, and the safety profile. Keeping these issues as a priority, the present review was designed to highlight the challenges in translating preclinical MSCEV research into clinical platforms and provide evidence for the regenerative potential of MSCEVs in various conditions of the liver, kidney, heart, nervous system, bone, muscle, cartilage, and other organs/tissues.

12.
Eur J Med Chem ; 214: 113221, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33540356

ABSTRACT

The Annona L. is one of the most significant genus of the Annonaceae family due to its widespread medicinal properties. This genus has a variety of active metabolites, including alkaloids, isoquinolines, peptides, acetogenins, lectins, volatile oils etc. Due to the constitution of cyclopeptides with an expanded spectrum of distinctive bioproperties, this genus is predominantly preferred over other species. The cytotoxicity, vasorelaxant activity, anti-inflammatory and other properties exhibited by cyclooligopeptides from seeds of Annona genus plants make these metabolites attractive leads for the drug discovery process. The present review covers the structural characteristics, structure activity relationship, synthesis strategies, pharmacological properties of plant seeds-originated bioactive peptides from Annona genus, which may be vital for the development of novel therapeutics based on peptide skeleton.


Subject(s)
Annona/chemistry , Anti-Inflammatory Agents/pharmacology , Antineoplastic Agents, Phytogenic/pharmacology , Biological Products/pharmacology , Oligopeptides/pharmacology , Plant Extracts/pharmacology , Anti-Inflammatory Agents/chemistry , Antineoplastic Agents, Phytogenic/chemistry , Biological Products/chemistry , Humans , Molecular Structure , Oligopeptides/chemistry , Plant Extracts/chemistry , Seeds/chemistry
13.
Arch Pharm (Weinheim) ; 354(4): e2000446, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33522644

ABSTRACT

Cyclopolypeptides are among the most predominant biomolecules in nature, especially those derived from plant seeds. This category of compounds has gained extraordinary attention due to remarkable variety of structures and valuable biofunctions. These congeners display enormous variation in terms of both structure and function and are the most significant biomolecules due to their widespread bioproperties. The estrogenic activity, immunosuppressive activity, cytotoxicity, vasorelaxant activity, and other properties possessed by cyclic peptides from seeds of plants make these congeners attractive leads for the drug discovery process. The current study covers the important structural features, structure-activity relationship, synthesis methods, and bioproperties of plant seeds-originated bioactive peptides from Vaccaria segetalis, Linum usitatissimum, and Goniothalamus leiocarpus, which may prove vital for the development of novel therapeutics based on a peptide skeleton.


Subject(s)
Biological Products/chemistry , Peptides/chemistry , Phytochemicals/chemistry , Plants, Medicinal/chemistry , Seeds/chemistry , Biological Products/metabolism , Biological Products/pharmacology , Flax/chemistry , Goniothalamus/chemistry , Humans , Molecular Conformation , Peptides/metabolism , Peptides/pharmacology , Phytochemicals/metabolism , Phytochemicals/pharmacology , Vaccaria/chemistry
14.
Crit Rev Eukaryot Gene Expr ; 30(3): 245-252, 2020.
Article in English | MEDLINE | ID: mdl-32749111

ABSTRACT

Peutz-Jeghers syndrome (PJS) is a well-described inherited syndrome, characterized by the development of gastrointestinal polyps and characteristic mucocutaneous freckling. PJS is an autosomal prevailing disease, due to genetic mutation on chromosome 19p, manifested by restricted mucocutaneous melanosis in association with gastrointestinal (GI) polyposis. The gene for PJS has recently been shown to be a serine/threonine kinase, known as LKB1 or STK11, which maps to chromosome subband 19p13.3. This gene has a putative coding region of 1302 bp, divided into nine exons, and acts as a tumor suppressor in the hamartomatous polyps of PJS patients and in the other neoplasms that develop in PJS patients. It is probable that these neoplasms develop from hamartomas, but it remains possible that the LKB1 or STK11 locus plays a role in a different genetic pathway of tumor growth in the cancers of PJS patients. This article focuses on the role of LKB1 or STK11 gene expression in PJS and related cancers.


Subject(s)
Peutz-Jeghers Syndrome/enzymology , Peutz-Jeghers Syndrome/genetics , Protein Serine-Threonine Kinases/physiology , AMP-Activated Protein Kinase Kinases , Gene Expression Regulation , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Mutation , Neoplasms/genetics , Peutz-Jeghers Syndrome/pathology
15.
Mar Drugs ; 18(6)2020 Jun 24.
Article in English | MEDLINE | ID: mdl-32599909

ABSTRACT

Peptides are distinctive biomacromolecules that demonstrate potential cytotoxicity and diversified bioactivities against a variety of microorganisms including bacteria, mycobacteria, and fungi via their unique mechanisms of action. Among broad-ranging pharmacologically active peptides, natural marine-originated thiazole-based oligopeptides possess peculiar structural features along with a wide spectrum of exceptional and potent bioproperties. Because of their complex nature and size divergence, thiazole-based peptides (TBPs) bestow a pivotal chemical platform in drug discovery processes to generate competent scaffolds for regulating allosteric binding sites and peptide-peptide interactions. The present study dissertates on the natural reservoirs and exclusive structural components of marine-originated TBPs, with a special focus on their most pertinent pharmacological profiles, which may impart vital resources for the development of novel peptide-based therapeutic agents.


Subject(s)
Biological Products/chemistry , Biological Products/pharmacology , Peptides/chemistry , Thiazoles/chemistry , Animals , Aquatic Organisms , Drug Discovery , Humans , Molecular Structure
16.
Chem Biol Interact ; 317: 108975, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-32032593

ABSTRACT

In patients with acute kidney injury progressively converting into chronic kidney disease (CKD), proteinuria and high blood pressure predict progression to end-stage renal disease (ESRD). Although, Renin-angiotensin-aldosterone system (RAAS) regulates blood pressure and kidney disease through both direct and indirect mechanisms. RAAS blockers that act at the level of angiotensin or lower in the cascade can cause compensatory increases in the plasma renin and angiotensin II level. Here, in this review article, we are exploring the evidence-based on RAAS blockade action releases of aldosterone and hypothesizing the molecular mechanism for converting the acute kidney injury into chronic kidney disease to end-stage renal disease.


Subject(s)
Aldosterone/metabolism , Kidney Diseases/drug therapy , Kidney Diseases/metabolism , Renin-Angiotensin System/drug effects , Adrenal Cortex Hormones/biosynthesis , Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Humans
17.
Iran J Pharm Res ; 19(3): 156-170, 2020.
Article in English | MEDLINE | ID: mdl-33680019

ABSTRACT

Synthesis of a natural proline-rich cyclopolypeptide - rolloamide A was carried out by coupling of tri- and tetrapeptide units Boc-Phe-Pro-Val-OMe and Boc-Pro-Leu-Pro-Ile-OMe after proper deprotection at carboxyl and amino terminals using carbodiimide chemistry in alkaline environment followed by cyclization of linear heptapeptide segment in the presence of base. The structure of synthesized peptide was confirmed by spectral techniques including FTIR, 1H NMR, 13C NMR, MS analyses. Newly synthesized peptide was subjected to biological screening against pathogenic microbes and earthworms. Cyclopeptide 8 possessed promising activity against pathogenic fungi Candida albicans (ZOI: 24 mm, MIC: 6 µg/mL) and Gram-negative bacteria Pseudomonas aeruginosa (ZOI: 27 mm, MIC: 6 µg/mL) and Klebsiella pneumoniae (ZOI: 23 mm, MIC: 12.5 µg/mL), in comparison to reference drugs - griseofulvin (ZOI: 20 mm, MIC: 6 µg/mL) and ciprofloxacin (ZOI: 25 mm, MIC: 6 µg/mL/ZOI: 20 mm, MIC: 12.5 µg/mL). Also, newly synthesized heptacyclopeptide exhibited potent anthelmintic activity against earthworms Megascoplex konkanensis, Pontoscotex corethruses, and Eudrilus species (MPT/MDT ratio - 8.22-16.02/10.06-17.59 min), in comparison to standard drugs - mebendazole (MPT/MDT ratio - 10.52-18.02/12.57-19.49 min) and piperazine citrate (MPT/MDT ratio - 12.38-19.17/13.44-22.17 min).

18.
Drug Dev Res ; 81(1): 23-31, 2020 02.
Article in English | MEDLINE | ID: mdl-31785110

ABSTRACT

The well-known condition of heart failure is a clinical syndrome that results when the myocardium's ability to pump enough blood to meet the body's metabolic needs is impaired. Most of the cardiac activity is maintained by adrenoceptors, are categorized into two main α and ß and three distinct subtypes of ß receptor: ß1-, ß2-, and ß3-adrenoceptors. The ß adrenoreceptor is the main regulatory macro proteins, predominantly available on heart and responsible for down regulatory cardiac signaling. Moreover, the pathological involvement of Angiotensin-converting enzyme 1 (ACE1)/angiotensin II (Ang II)/angiotensin II type 1 (AT1) axis and beneficial ACE2/Ang (1-7)/Mas receptor axis also shows protective role via Gi ßγ, during heart failure these receptors get desensitized or internalized due to increase in the activity of G-protein-coupled receptor kinase 2 (GRK2) and GRK5, responsible for phosphorylation of G-protein-mediated down regulatory signaling. Here, we investigate the various clinical and preclinical data that exhibit the molecular mechanism of upset level of GRK change the cardiac activity during failing heart.


Subject(s)
Heart Failure/metabolism , Receptors, G-Protein-Coupled/metabolism , Heart Failure/complications , Phosphorylation , Signal Transduction
19.
J Environ Pathol Toxicol Oncol ; 38(2): 133-141, 2019.
Article in English | MEDLINE | ID: mdl-31679276

ABSTRACT

The current study is a review of the literature on patients with diabetes who are diagnosed with colorectal cancer (CRC), encompassing recent research on CRC and the molecular level changes occurring in these patients on the basis of varying environmental as well as non-environmental factors. It has been noted that nearly 50% of all patients undergo the systemic treatment module; however, most of them exhibit drug resistance. In addition, targeted gene therapy has also been used in treatment but has been found to be effective only in patients with a specified molecular profile (or else this might lead to an increased risk of developing resistant mutations). This has led to increasing interest among researchers in finding innovative treatment options. Metformin, a biguanide, has been widely used in treating diabetes. The drug has been reportedly used in cases of hypothesis-generating retrospective population studies of diabetic patients showing reduced incidence of cancer. Metformin helps in reduction of excess insulin levels that possess various effects on cell signaling and metabolism. Nonetheless, there is need for an in-depth study on its molecular mechanism to fill any existing research gaps.


Subject(s)
Antineoplastic Agents/therapeutic use , Colorectal Neoplasms/drug therapy , Hypoglycemic Agents/therapeutic use , Metformin/therapeutic use , Colorectal Neoplasms/complications , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Humans , Insulin/adverse effects , Signal Transduction/drug effects
20.
Iran J Pharm Res ; 18(2): 938-947, 2019.
Article in English | MEDLINE | ID: mdl-31531075

ABSTRACT

A new bioactive proline-rich cyclohexapeptide - diandrine C (6), previously isolated from whole plant of Drymaria diandra (Caryophyllaceae), was synthesized through coupling reactions of tetrapeptide unit Boc-Gly--Pro--Tyr--Trp-OH with dipeptide unit -Pro-Gly-OMe using N,N-diisopropylcarbodiimide (DIPC) as the coupling agent, followed by cyclization of linear hexapeptide unit under alkaline condition. Structure of cyclohexapeptide was confirmed by means of chemical, and spectroscopic analyses and also was screened for its antimicrobial and anthelmintic properties. Bioevaluation results indicated that the newly synthesized hexacyclopeptide exhibited potent antimicrobial activity against Gram-negative bacteria Pseudomonas aeruginosa, Klebsiella pneumoniae and pathogenic Candida albicans at 6 µg/mL. Moderate to good level of antihelmintic activity against three earthworm species Megascoplex konkanensis, Pontoscotex corethruses and Eudrilus eugeniae was also observed at concentration of 2 mg/mL.

SELECTION OF CITATIONS
SEARCH DETAIL
...