Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 53(24): 5531-7, 2014 Aug 20.
Article in English | MEDLINE | ID: mdl-25321130

ABSTRACT

We present synthetic aperture ladar (SAL) imaging demonstrations where the return-signal level from the target is near the single-photon level per resolved pixel. Scenes consisting of both specular-point targets and diffuse-reflection, fully speckled targets are studied. Artificial retro-reflector-based phase references and/or phase-gradient-autofocus (PGA) algorithms were utilized for compensation of phase errors during the aperture motion. It was found that SAL images could reliably be formed with both methods even when the final max pixel intensity was at the few photon level, which means the SNR before azimuth compression is below unity. Mutual information-based comparison of SAL images show that average mutual information is reduced when the PGA is utilized for image-based phase compensation. The photon information efficiency of SAL and coherent imaging is discussed.

2.
J Opt Soc Am A Opt Image Sci Vis ; 30(7): 1335-41, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-24323147

ABSTRACT

A theoretical analysis and experimental verification of the sensitivity limits of frequency-modulated continuous-wave (FMCW) ladar in the limit of a strong local oscillator is presented. The single-photon sensitivity of coherent heterodyne detection in this shot-noise dominated limit is verified to extend to linearly chirped waveforms. An information theoretic analysis is presented to estimate the information efficiency of received photons for the task of locating the range to single and multiple targets. It is found that the optimum receive signal level is proportional to the logarithm of the number of resolvable range locations and the maximum theoretical photon information efficiency for FMCW ranging with coherent fields is log(e)≈1.44 bits per received photon.

3.
Opt Lett ; 36(7): 1152-4, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21479013

ABSTRACT

The optical frequency sweep of an actively linearized, ultrabroadband, chirped laser source is characterized through optical heterodyne detection against a fiber-laser frequency comb. Frequency sweeps were measured over approximately 5 THz bandwidths from 1530 nm to 1570 nm. The dominant deviation from linearity resulted from the nonzero dispersion of the fiber delay used as a reference for the sweep linearization. Removing the low-order dispersion effects, the residual sweep nonlinearity was less than 60 kHz rms, corresponding to a constant chirp with less than 15 ppb deviation across the 5 THz sweep.

SELECTION OF CITATIONS
SEARCH DETAIL
...