Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Rep ; 12(1): 22474, 2022 12 28.
Article in English | MEDLINE | ID: mdl-36577792

ABSTRACT

Fibroblasts are a major cell population that perform critical functions in the wound healing process. In response to injury, they proliferate and migrate into the wound space, engaging in extracellular matrix (ECM) production, remodeling, and contraction. However, there is limited knowledge of how fibroblast functions are altered in diabetes. To address this gap, several state-of-the-art microscopy techniques were employed to investigate morphology, migration, ECM production, 2D traction, 3D contraction, and cell stiffness. Analysis of cell-derived matrix (CDM) revealed that diabetic fibroblasts produce thickened and less porous ECM that hindered migration of normal fibroblasts. In addition, diabetic fibroblasts were found to lose spindle-like shape, migrate slower, generate less traction force, exert limited 3D contractility, and have increased cell stiffness. These changes were due, in part, to a decreased level of active Rac1 and a lack of co-localization between F-actin and Waskott-Aldrich syndrome protein family verprolin homologous protein 2 (WAVE2). Interestingly, deletion of thrombospondin-2 (TSP2) in diabetic fibroblasts rescued these phenotypes and restored normal levels of active Rac1 and WAVE2-F-actin co-localization. These results provide a comprehensive view of the extent of diabetic fibroblast dysfunction, highlighting the regulatory role of the TSP2-Rac1-WAVE2-actin axis, and describing a new function of TSP2 in regulating cytoskeleton organization.


Subject(s)
Actins , Diabetes Mellitus , Humans , Actins/metabolism , Thrombospondins/metabolism , Cytoskeleton/metabolism , Wound Healing , Fibroblasts/metabolism , Diabetes Mellitus/metabolism , Wiskott-Aldrich Syndrome Protein Family/metabolism , Cell Movement/physiology , rac1 GTP-Binding Protein/metabolism
3.
Sci Adv ; 8(19): eabm7193, 2022 May 13.
Article in English | MEDLINE | ID: mdl-35544567

ABSTRACT

Although proteins are considered as nonconductors that transfer electrons only up to 1 to 2 nanometers via tunneling, Geobacter sulfurreducens transports respiratory electrons over micrometers, to insoluble acceptors or syntrophic partner cells, via nanowires composed of polymerized cytochrome OmcS. However, the mechanism enabling this long-range conduction is unclear. Here, we demonstrate that individual nanowires exhibit theoretically predicted hopping conductance, at rate (>1010 s-1) comparable to synthetic molecular wires, with negligible carrier loss over micrometers. Unexpectedly, nanowires show a 300-fold increase in their intrinsic conductance upon cooling, which vanishes upon deuteration. Computations show that cooling causes a massive rearrangement of hydrogen bonding networks in nanowires. Cooling makes hemes more planar, as revealed by Raman spectroscopy and simulations, and lowers their reduction potential. We find that the protein surrounding the hemes acts as a temperature-sensitive switch that controls charge transport by sensing environmental perturbations. Rational engineering of heme environments could enable systematic tuning of extracellular respiration.

4.
Nat Neurosci ; 25(4): 458-473, 2022 04.
Article in English | MEDLINE | ID: mdl-35379995

ABSTRACT

Hydrocephalus, characterized by cerebral ventricular dilatation, is routinely attributed to primary defects in cerebrospinal fluid (CSF) homeostasis. This fosters CSF shunting as the leading reason for brain surgery in children despite considerable disease heterogeneity. In this study, by integrating human brain transcriptomics with whole-exome sequencing of 483 patients with congenital hydrocephalus (CH), we found convergence of CH risk genes in embryonic neuroepithelial stem cells. Of all CH risk genes, TRIM71/lin-41 harbors the most de novo mutations and is most specifically expressed in neuroepithelial cells. Mice harboring neuroepithelial cell-specific Trim71 deletion or CH-specific Trim71 mutation exhibit prenatal hydrocephalus. CH mutations disrupt TRIM71 binding to its RNA targets, causing premature neuroepithelial cell differentiation and reduced neurogenesis. Cortical hypoplasia leads to a hypercompliant cortex and secondary ventricular enlargement without primary defects in CSF circulation. These data highlight the importance of precisely regulated neuroepithelial cell fate for normal brain-CSF biomechanics and support a clinically relevant neuroprogenitor-based paradigm of CH.


Subject(s)
Hydrocephalus , Animals , Biomechanical Phenomena , Brain/metabolism , Cerebrospinal Fluid/metabolism , Humans , Hydrocephalus/cerebrospinal fluid , Hydrocephalus/genetics , Mice , Neurogenesis/genetics , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Exome Sequencing
5.
Nat Commun ; 13(1): 829, 2022 02 11.
Article in English | MEDLINE | ID: mdl-35149672

ABSTRACT

Advances in synthetic biology permit the genetic encoding of synthetic chemistries at monomeric precision, enabling the synthesis of programmable proteins with tunable properties. Bacterial pili serve as an attractive biomaterial for the development of engineered protein materials due to their ability to self-assemble into mechanically robust filaments. However, most biomaterials lack electronic functionality and atomic structures of putative conductive proteins are not known. Here, we engineer high electronic conductivity in pili produced by a genomically-recoded E. coli strain. Incorporation of tryptophan into pili increased conductivity of individual filaments >80-fold. Computationally-guided ordering of the pili into nanostructures increased conductivity 5-fold compared to unordered pili networks. Site-specific conjugation of pili with gold nanoparticles, facilitated by incorporating the nonstandard amino acid propargyloxy-phenylalanine, increased filament conductivity ~170-fold. This work demonstrates the sequence-defined production of highly-conductive protein nanowires and hybrid organic-inorganic biomaterials with genetically-programmable electronic functionalities not accessible in nature or through chemical-based synthesis.


Subject(s)
Electric Conductivity , Metal Nanoparticles/chemistry , Nanowires , Proteins/metabolism , Chemical Phenomena , Escherichia coli/genetics , Fimbriae Proteins , Fimbriae, Bacterial/metabolism , Gold/chemistry , Nanostructures , Nanowires/chemistry , Phenylalanine/metabolism , Protein Engineering , Tryptophan/metabolism
6.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Article in English | MEDLINE | ID: mdl-33372136

ABSTRACT

Proteins are commonly known to transfer electrons over distances limited to a few nanometers. However, many biological processes require electron transport over far longer distances. For example, soil and sediment bacteria transport electrons, over hundreds of micrometers to even centimeters, via putative filamentous proteins rich in aromatic residues. However, measurements of true protein conductivity have been hampered by artifacts due to large contact resistances between proteins and electrodes. Using individual amyloid protein crystals with atomic-resolution structures as a model system, we perform contact-free measurements of intrinsic electronic conductivity using a four-electrode approach. We find hole transport through micrometer-long stacked tyrosines at physiologically relevant potentials. Notably, the transport rate through tyrosines (105 s-1) is comparable to cytochromes. Our studies therefore show that amyloid proteins can efficiently transport charges, under ordinary thermal conditions, without any need for redox-active metal cofactors, large driving force, or photosensitizers to generate a high oxidation state for charge injection. By measuring conductivity as a function of molecular length, voltage, and temperature, while eliminating the dominant contribution of contact resistances, we show that a multistep hopping mechanism (composed of multiple tunneling steps), not single-step tunneling, explains the measured conductivity. Combined experimental and computational studies reveal that proton-coupled electron transfer confers conductivity; both the energetics of the proton acceptor, a neighboring glutamine, and its proximity to tyrosine influence the hole transport rate through a proton rocking mechanism. Surprisingly, conductivity increases 200-fold upon cooling due to higher availability of the proton acceptor by increased hydrogen bonding.


Subject(s)
Amyloidogenic Proteins/chemistry , Amyloidogenic Proteins/physiology , Proteins/physiology , Cytochromes/chemistry , Cytochromes/physiology , Electric Conductivity , Electron Transport/physiology , Electrons , Hydrogen Bonding , Models, Biological , Molecular Dynamics Simulation , Oxidation-Reduction , Proteins/chemistry , Protons , Tyrosine/chemistry
7.
Nat Chem Biol ; 16(10): 1136-1142, 2020 10.
Article in English | MEDLINE | ID: mdl-32807967

ABSTRACT

Multifunctional living materials are attractive due to their powerful ability to self-repair and replicate. However, most natural materials lack electronic functionality. Here we show that an electric field, applied to electricity-producing Geobacter sulfurreducens biofilms, stimulates production of cytochrome OmcZ nanowires with 1,000-fold higher conductivity (30 S cm-1) and threefold higher stiffness (1.5 GPa) than the cytochrome OmcS nanowires that are important in natural environments. Using chemical imaging-based multimodal nanospectroscopy, we correlate protein structure with function and observe pH-induced conformational switching to ß-sheets in individual nanowires, which increases their stiffness and conductivity by 100-fold due to enhanced π-stacking of heme groups; this was further confirmed by computational modeling and bulk spectroscopic studies. These nanowires can transduce mechanical and chemical stimuli into electrical signals to perform sensing, synthesis and energy production. These findings of biologically produced, highly conductive protein nanowires may help to guide the development of seamless, bidirectional interfaces between biological and electronic systems.


Subject(s)
Bacterial Proteins/metabolism , Electric Stimulation , Geobacter/physiology , Nanowires/chemistry , Bacterial Proteins/genetics , Electric Conductivity , Electrophysiological Phenomena
8.
Chem Phys Lipids ; 215: 18-28, 2018 09.
Article in English | MEDLINE | ID: mdl-30012406

ABSTRACT

Fusion and fission of cellular membranes involve dramatic, protein-mediated changes in membrane curvature. Many of the experimental methods useful for investigating curvature sensing or generation require specialized equipment. We have developed a system based on supported lipid bilayers (SLBs) in which lipid tubules are simple to produce and several types of membrane remodeling events can be readily imaged using widely available instrumentation (e.g., tubule fission and/or membrane budding). Briefly, high ionic strength during lipid bilayer deposition results in incorporation of excess lipids in the SLB. After sequentially washing with water and physiological ionic strength buffer solutions, lipid tubules form spontaneously. We find that tubule formation results from solution-dependent spreading of the SLB; washing from water into physiological ionic strength buffer solution leads to expansion of the bilayer and formation of tubules. Conversely, washing from physiological buffer into water results in contraction of the membrane and loss of tubules. We demonstrate the utility of these supported tubulated bilayers, termed "STuBs," with an investigation of Sar1B, a small Ras family G-protein known to influence membrane curvature. The addition of Sar1B to STuBs results in dramatic changes in tubule topology and eventual tubule fission. Overall, STuBs are a simple experimental system, useful for monitoring protein-mediated effects on membrane topology in real time, under physiologically relevant conditions.


Subject(s)
Cell Membrane/chemistry , Lipid Bilayers/chemistry , Membrane Proteins/chemistry , Liposomes/chemistry , Osmolar Concentration , Water/chemistry
9.
J Gen Physiol ; 149(8): 763-780, 2017 Aug 07.
Article in English | MEDLINE | ID: mdl-28687607

ABSTRACT

Adrenomedullary chromaffin cells respond to sympathetic nervous system activation by secreting a cocktail of potent neuropeptides and hormones into the circulation. The distinct phases of the chromaffin cell secretory response have been attributed to the progressive fusion of distinct populations of dense core granules with different activation kinetics. However, it has been difficult to define what distinguishes these populations at the molecular level. Functional segregation of granule pools may depend on selective sorting of synaptotagmin-1 (Syt-1) and synaptotagmin-7 (Syt-7), which our previous work showed are rarely cosorted to the same granule. Here we assess the consequences of selective sorting of Syt isoforms in chromaffin cells, particularly with respect to granule dynamics and activation kinetics. Upon depolarization of cells expressing fluorescent Syt isoforms using elevated K+, we find that Syt-7 granules fuse with faster kinetics than Syt-1 granules, irrespective of stimulation strength. Pharmacological blockade of Ca2+ channels reveals differential dependence of Syt-1 versus Syt-7 granule exocytosis on Ca2+ channel subtypes. Syt-7 granules also show a greater tendency to fuse in clusters than Syt-1 granules, and granules harboring Syt-1 travel a greater distance before fusion than those with Syt-7, suggesting that there is spatial and fusion-site heterogeneity among the two granule populations. However, the greatest functional difference between granule populations is their responsiveness to Ca2+ Upon introduction of Ca2+ into permeabilized cells, Syt-7 granules fuse with fast kinetics and high efficacy, even at low Ca2+ levels (e.g., when cells are weakly stimulated). Conversely, Syt-1 granules require a comparatively larger increase in intracellular Ca2+ for activation. At Ca2+ concentrations above 30 µM, activation kinetics are faster for Syt-1 granules than for Syt-7 granules. Our study provides evidence for functional specialization of chromaffin cell granules via selective expression of Syt isoforms with different Ca2+ sensitivities.


Subject(s)
Chromaffin Cells/metabolism , Cytoplasmic Granules/metabolism , Exocytosis , Synaptotagmins/metabolism , Animals , Calcium Channels/metabolism , Calcium Signaling , Cattle , Cells, Cultured , Female , Kinetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Synaptotagmins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...