Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Biochem Biophys Res Commun ; 705: 149734, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38430607

ABSTRACT

CD38 is a multifunctional enzyme implicated in chemotaxis of myeloid cells and lymphocyte activation, but also expressed by resident cells such as endothelial and smooth muscle cells. CD38 is important for host defense against microbes. However, CD38's role in the pathogenesis of atherosclerosis is controversial with seemingly conflicting results reported so far. To clarify the discrepancy of current literature on the effect of CD38 ablation on atherosclerosis development, we implanted a shear stress modifier around the right carotid artery in CD38-/- and WT mice. Hypercholesterolemia was induced by human gain-of-function PCSK9 (D374Y), introduced using AAV vector (serotype 9), combined with an atherogenic diet for a total of 9 weeks. Atherosclerosis was assessed at the aortic root, aortic arch and the right carotid artery. The findings can be summarized as follows: i) CD38-/- and WT mice had a similar atherosclerotic burden in all three locations, ii) No significant differences in monocyte infiltration or macrophage content could be seen in the plaques, and iii) The amount of collagen deposition in the plaques were also similar between CD38-/- and WT mice. In conclusion, our data suggest that CD38-/- mice are neither protected against nor prone to atherosclerosis compared to WT mice.


Subject(s)
Atherosclerosis , Proprotein Convertase 9 , Animals , Humans , Mice , Aorta , Atherosclerosis/genetics , Atherosclerosis/prevention & control , Carotid Artery, Common , Antigens, CD/genetics , Antigens, CD/metabolism
3.
J Intern Med ; 294(6): 784-797, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37718572

ABSTRACT

BACKGROUND: Abnormal remodelling of the extracellular matrix (ECM) has generally been linked to pulmonary inflammation and fibrosis and may also play a role in the pathogenesis of severe COVID-19. To further elucidate the role of ECM remodelling and excessive fibrogenesis in severe COVID-19, we examined circulating levels of mediators involved in various aspects of these processes in COVID-19 patients. METHODS: Serial blood samples were obtained from two cohorts of hospitalised COVID-19 patients (n = 414). Circulating levels of ECM remodelling mediators were quantified by enzyme immunoassays in samples collected during hospitalisation and at 3-month follow-up. Samples were related to disease severity (respiratory failure and/or treatment at the intensive care unit), 60-day total mortality and pulmonary pathology after 3-months. We also evaluated the direct effect of inactivated SARS-CoV-2 on the release of the different ECM mediators in relevant cell lines. RESULTS: Several of the measured markers were associated with adverse outcomes, notably osteopontin (OPN), S100 calcium-binding protein A12 and YKL-40 were associated with disease severity and mortality. High levels of ECM mediators during hospitalisation were associated with computed tomography thorax pathology after 3-months. Some markers (i.e. growth differential factor 15, galectin 3 and matrix metalloproteinase 9) were released from various relevant cell lines (i.e. macrophages and lung cell lines) in vitro after exposure to inactivated SARS-CoV-2 suggesting a direct link between these mediators and the causal agent of COVID-19. CONCLUSION: Our findings highlight changes to ECM remodelling and particularly a possible role of OPN, S100A12 and YKL-40 in the pathogenesis of severe COVID-19.


Subject(s)
COVID-19 , Pneumonia , Humans , COVID-19/metabolism , Chitinase-3-Like Protein 1 , SARS-CoV-2 , Extracellular Matrix
4.
Crit Care ; 27(1): 9, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36627655

ABSTRACT

BACKGROUND: Baricitinib has shown efficacy in hospitalized patients with COVID-19, but no placebo-controlled trials have focused specifically on severe/critical COVID, including vaccinated participants. METHODS: Bari-SolidAct is a phase-3, multicentre, randomised, double-blind, placebo-controlled trial, enrolling participants from June 3, 2021 to March 7, 2022, stopped prematurely for external evidence. Patients with severe/critical COVID-19 were randomised to Baricitinib 4 mg once daily or placebo, added to standard of care. The primary endpoint was all-cause mortality within 60 days. Participants were remotely followed to day 90 for safety and patient related outcome measures. RESULTS: Two hundred ninety-nine patients were screened, 284 randomised, and 275 received study drug or placebo and were included in the modified intent-to-treat analyses (139 receiving baricitinib and 136 placebo). Median age was 60 (IQR 49-69) years, 77% were male and 35% had received at least one dose of SARS-CoV2 vaccine. There were 21 deaths at day 60 in each group, 15.1% in the baricitinib group and 15.4% in the placebo group (adjusted absolute difference and 95% CI - 0.1% [- 8·3 to 8·0]). In sensitivity analysis censoring observations after drug discontinuation or rescue therapy (tocilizumab/increased steroid dose), proportions of death were 5.8% versus 8.8% (- 3.2% [- 9.0 to 2.7]), respectively. There were 148 serious adverse events in 46 participants (33.1%) receiving baricitinib and 155 in 51 participants (37.5%) receiving placebo. In subgroup analyses, there was a potential interaction between vaccination status and treatment allocation on 60-day mortality. In a subsequent post hoc analysis there was a significant interaction between vaccination status and treatment allocation on the occurrence of serious adverse events, with more respiratory complications and severe infections in vaccinated participants treated with baricitinib. Vaccinated participants were on average 11 years older, with more comorbidities. CONCLUSION: This clinical trial was prematurely stopped for external evidence and therefore underpowered to conclude on a potential survival benefit of baricitinib in severe/critical COVID-19. We observed a possible safety signal in vaccinated participants, who were older with more comorbidities. Although based on a post-hoc analysis, these findings warrant further investigation in other trials and real-world studies. Trial registration Bari-SolidAct is registered at NCT04891133 (registered May 18, 2021) and EUClinicalTrials.eu ( 2022-500385-99-00 ).


Subject(s)
COVID-19 , Humans , Adult , Male , Middle Aged , Female , SARS-CoV-2 , RNA, Viral , COVID-19 Drug Treatment , Double-Blind Method
5.
J Inflamm Res ; 15: 6629-6644, 2022.
Article in English | MEDLINE | ID: mdl-36514358

ABSTRACT

Purpose: Reactive oxygen species (ROS) are an important part of the inflammatory response during infection but can also promote DNA damage. Due to the sustained inflammation in severe Covid-19, we hypothesized that hospitalized Covid-19 patients would be characterized by increased levels of oxidative DNA damage and dysregulation of the DNA repair machinery. Patients and Methods: Levels of the oxidative DNA lesion 8-oxoG and levels of base excision repair (BER) proteins were measured in peripheral blood mononuclear cells (PBMC) from patients (8-oxoG, n = 22; BER, n = 17) and healthy controls (n = 10) (Cohort 1). Gene expression related to DNA repair was investigated in two independent cohorts of hospitalized Covid-19 patients (Cohort 1; 15 patents and 5 controls, Cohort 2; 15 patients and 6 controls), and by publicly available datasets. Results: Patients and healthy controls showed comparable amounts of oxidative DNA damage as assessed by 8-oxoG while levels of several BER proteins were increased in Covid-19 patients, indicating enhanced DNA repair in acute Covid-19 disease. Furthermore, gene expression analysis demonstrated regulation of genes involved in BER and double strand break repair (DSBR) in PBMC of Covid-19 patients and expression level of several DSBR genes correlated with the degree of respiratory failure. Finally, by re-analyzing publicly available data, we found that the pathway Hallmark DNA repair was significantly more regulated in circulating immune cells during Covid-19 compared to influenza virus infection, bacterial pneumonia or acute respiratory infection due to seasonal coronavirus. Conclusion: Although beneficial by protecting against DNA damage, long-term activation of the DNA repair machinery could also contribute to persistent inflammation, potentially through mechanisms such as the induction of cellular senescence. However, further studies that also include measurements of additional markers of DNA damage are required to determine the role and precise molecular mechanisms for DNA repair in SARS-CoV-2 infection.

6.
Infect Dis (Lond) ; 54(12): 918-923, 2022 12.
Article in English | MEDLINE | ID: mdl-35984738

ABSTRACT

BACKGROUND: The lungs are the organ most likely to sustain serious injury from coronavirus disease 2019 (COVID-19). However, the mechanisms for long-term complications are not clear. Patients with severe COVID-19 have shorter telomere lengths and higher levels of cellular senescence, and we hypothesized that circulating levels of the telomere-associated senescence markers chitotriosidase, ß-galactosidase, cathelicidin antimicrobial peptide and stathmin 1 (STMN1) were elevated in hospitalized COVID-19 patients compared to controls and could be associated with pulmonary sequelae following hospitalization. METHODS: Ninety-seven hospitalized patients with COVID-19 who underwent assessment for pulmonary sequelae at three-month follow-up were included in the study. ß-Galactosidase and chitotriosidase were analysed by fluorescence; stathmin 1 and cathelicidin antimicrobial peptide were analysed by enzyme immuno-assay in plasma samples from the acute phase and after three-months. In addition, the classical senescence markers cyclin-dependent kinase inhibitor 1A and 2A were analysed by enzyme immuno-assay in peripheral blood mononuclear cell lysate after three months. RESULTS: We found elevated plasma levels of the senescence markers chitotriosidase and stathmin 1 in patients three months after hospitalization with COVID-19, and these markers in addition to protein levels of cyclin-dependent kinase inhibitor 2A in cell lysate, were associated with pulmonary pathology. The elevated levels of these markers seem to reflect both age-dependent (chitotriosidase) and age-independent (stathmin 1, cyclin-dependent kinase inhibitor 2A) processes. CONCLUSIONS: We suggest that accelerated ageing or senescence could be important for long-term pulmonary complications of COVID-19, and our findings may be relevant for future research exploring the pathophysiology and management of these patients.


Subject(s)
COVID-19 , Humans , COVID-19/complications , Stathmin , Leukocytes, Mononuclear/metabolism , Cellular Senescence/physiology , beta-Galactosidase/metabolism , Biomarkers , Disease Progression , Cyclin-Dependent Kinases
7.
J Infect Dis ; 226(12): 2150-2160, 2022 12 13.
Article in English | MEDLINE | ID: mdl-35876699

ABSTRACT

BACKGROUND: Immune dysregulation is a major factor in the development of severe coronavirus disease 2019 (COVID-19). The homeostatic chemokines CCL19 and CCL21 have been implicated as mediators of tissue inflammation, but data on their regulation in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is limited. We thus investigated the levels of these chemokines in COVID-19 patients. METHODS: Serial blood samples were obtained from patients hospitalized with COVID-19 (n = 414). Circulating CCL19 and CCL21 levels during hospitalization and 3-month follow-up were analyzed. In vitro assays and analysis of RNAseq data from public repositories were performed to further explore possible regulatory mechanisms. RESULTS: A consistent increase in circulating levels of CCL19 and CCL21 was observed, with high levels correlating with disease severity measures, including respiratory failure, need for intensive care, and 60-day all-cause mortality. High levels of CCL21 at admission were associated with persisting impairment of pulmonary function at the 3-month follow-up. CONCLUSIONS: Our findings highlight CCL19 and CCL21 as markers of immune dysregulation in COVID-19. This may reflect aberrant regulation triggered by tissue inflammation, as observed in other chronic inflammatory and autoimmune conditions. Determination of the source and regulation of these chemokines and their effects on lung tissue is warranted to further clarify their role in COVID-19. CLINICAL TRIALS REGISTRATION: NCT04321616 and NCT04381819.


Subject(s)
COVID-19 , Humans , Chemokine CCL19 , Chemokine CCL21 , Chemokines , Inflammation , Patient Acuity , Receptors, CCR7 , SARS-CoV-2
8.
Platelets ; 33(4): 640-644, 2022 May 19.
Article in English | MEDLINE | ID: mdl-35225150

ABSTRACT

Thromboembolic events are frequent and associated with poor outcome in severe COVID-19 disease. Anti-PF4/polyanion antibodies are related to heparin-induced thrombocytopenia (HIT) and thrombus formation, but data on these antibodies in unselected COVID-19 populations are scarce. We assessed the presence of anti-PF4/polyanion antibodies in prospectively collected serum from an unselected cohort of hospitalized COVID-19 patients and evaluated if elevated levels could give prognostic information on ICU admission and respiratory failure (RF), were associated with markers of inflammation, endothelial activation, platelet activation, coagulation and fibrosis and were associated with long-term pulmonary CT changes. Five out of 65 patients had anti-PF4/polyanion reactivity with OD ≥0.200. These patients had more severe disease as reflected by ICU admission without any evidence of HIT. They also had signs of enhanced inflammation and fibrinogenesis as reflected by elevated ferritin and osteopontin, respectively, during the first 10 days of hospitalization. Increased ferritin and osteopontin persisted in these patients at 3 months follow-up, concomitant with pulmonary CT pathology. Our finding shows that the presence of anti-PF4/polyanion antibodies in unselected hospitalized COVID-19 patients was not related to HIT, but was associated with disease severity, inflammation, and pulmonary pathology after 3 months.


Subject(s)
COVID-19 , Thrombocytopenia , Anticoagulants/adverse effects , Ferritins/adverse effects , Heparin/adverse effects , Humans , Inflammation , Osteopontin/adverse effects , Platelet Factor 4 , Severity of Illness Index , Thrombocytopenia/diagnosis
9.
J Intern Med ; 291(6): 801-812, 2022 06.
Article in English | MEDLINE | ID: mdl-35212063

ABSTRACT

BACKGROUND: Although coronavirus disease 2019 (COVID-19) is primarily a respiratory infection, mounting evidence suggests that the gastrointestinal tract is involved in the disease, with gut barrier dysfunction and gut microbiota alterations being related to disease severity. Whether these alterations persist and are related to long-term respiratory dysfunction remains unknown. METHODS: Plasma was collected during hospital admission and after 3 months from the NOR-Solidarity trial (n = 181) and analyzed for markers of gut barrier dysfunction and inflammation. At the 3-month follow-up, pulmonary function was assessed by measuring the diffusing capacity of the lungs for carbon monoxide (DLCO ). Rectal swabs for gut microbiota analyses were collected (n = 97) and analyzed by sequencing the 16S rRNA gene. RESULTS: Gut microbiota diversity was reduced in COVID-19 patients with respiratory dysfunction, defined as DLCO below the lower limit of normal 3 months after hospitalization. These patients also had an altered global gut microbiota composition, with reduced relative abundance of 20 bacterial taxa and increased abundance of five taxa, including Veillonella, potentially linked to fibrosis. During hospitalization, increased plasma levels of lipopolysaccharide-binding protein (LBP) were strongly associated with respiratory failure, defined as pO2 /fiO2 (P/F ratio) <26.6 kPa. LBP levels remained elevated during and after hospitalization and were associated with low-grade inflammation and respiratory dysfunction after 3 months. CONCLUSION: Respiratory dysfunction after COVID-19 is associated with altered gut microbiota and persistently elevated LBP levels. Our results should be regarded as hypothesis generating, pointing to a potential gut-lung axis that should be further investigated in relation to long-term pulmonary dysfunction and long COVID.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , COVID-19/complications , Clinical Trials as Topic , Humans , Inflammation , RNA, Ribosomal, 16S/genetics , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
11.
Sci Rep ; 11(1): 23205, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34853380

ABSTRACT

The association between pulmonary sequelae and markers of disease severity, as well as pro-fibrotic mediators, were studied in 108 patients 3 months after hospital admission for COVID-19. The COPD assessment test (CAT-score), spirometry, diffusion capacity of the lungs (DLCO), and chest-CT were performed at 23 Norwegian hospitals included in the NOR-SOLIDARITY trial, an open-labelled, randomised clinical trial, investigating the efficacy of remdesivir and hydroxychloroquine (HCQ). Thirty-eight percent had a CAT-score ≥ 10. DLCO was below the lower limit of normal in 29.6%. Ground-glass opacities were present in 39.8% on chest-CT, parenchymal bands were found in 41.7%. At admission, low pO2/FiO2 ratio, ICU treatment, high viral load, and low antibody levels, were predictors of a poorer pulmonary outcome after 3 months. High levels of matrix metalloproteinase (MMP)-9 during hospitalisation and at 3 months were associated with persistent CT-findings. Except for a negative effect of remdesivir on CAT-score, we found no effect of remdesivir or HCQ on long-term pulmonary outcomes. Three months after hospital admission for COVID-19, a high prevalence of respiratory symptoms, reduced DLCO, and persistent CT-findings was observed. Low pO2/FiO2 ratio, ICU-admission, high viral load, low antibody levels, and high levels of MMP-9 were associated with a worse pulmonary outcome.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , COVID-19 Drug Treatment , Hydroxychloroquine/adverse effects , Lung Diseases/pathology , Matrix Metalloproteinase 9/metabolism , SARS-CoV-2/drug effects , Viral Load , Adenosine Monophosphate/adverse effects , Aged , Alanine/adverse effects , Antibody Formation , Antimalarials/adverse effects , Antiviral Agents/adverse effects , Antiviral Agents/therapeutic use , COVID-19/virology , Female , Hospitalization , Humans , Lung Diseases/chemically induced , Lung Diseases/enzymology , Lung Diseases/virology , Male , Middle Aged , Severity of Illness Index
12.
J Am Heart Assoc ; 10(14): e020656, 2021 07 20.
Article in English | MEDLINE | ID: mdl-34259011

ABSTRACT

Background In cardiovascular diseases, atherosclerotic disorder are the most frequent and important with respect to morbidity and mortality. Inflammation mediated by immune cells is central in all parts of the atherosclerotic progress, and further understanding of the underlying mechanisms is needed. Growing evidence suggests that deamination of adenosine-to-inosine in RNA is crucial for a correct immune response; nevertheless, the role of adenosine-to-inosine RNA editing in atherogenesis has barely been studied. Several proteins have affinity for inosines in RNA, one being ENDOV (endonuclease V), which binds and cleaves RNA at inosines. Data on ENDOV in atherosclerosis are lacking. Methods and Results Quantitative polymerase chain reaction on ENDOV mRNA showed an increased level in human carotid atherosclerotic plaques compared with control veins. Inosine-ribonuclease activity as measured by an enzyme activity assay is detected in immune cells relevant for the atherosclerotic process. Abolishing EndoV in atherogenic apolipoprotein E-deficient (ApoE-/-) mice reduces the atherosclerotic plaque burden, both in size and lipid content. In addition, in a brain stroke model, mice without ENDOV suffer less damage than control mice. Finally, lack of EndoV reduces the recruitment of monocytes to atherosclerotic lesions in atherogenic ApoE-/- mice. Conclusions ENDOV is upregulated in human atherosclerotic lesions, and data from mice suggest that ENDOV promotes atherogenesis by enhancing the monocyte recruitment into the atherosclerotic lesion, potentially by increasing the effect of CCL2 activation on these cells.


Subject(s)
Aorta, Thoracic/pathology , Atherosclerosis/genetics , Chemokine CCL2/genetics , Deoxyribonuclease (Pyrimidine Dimer)/genetics , Gene Expression Regulation , Monocytes/metabolism , RNA/genetics , Aged , Animals , Aorta, Thoracic/metabolism , Atherosclerosis/metabolism , Atherosclerosis/pathology , Chemokine CCL2/biosynthesis , Cytokines , Deoxyribonuclease (Pyrimidine Dimer)/biosynthesis , Disease Models, Animal , Disease Progression , Female , Follow-Up Studies , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Monocytes/pathology , Retrospective Studies
13.
Ann Intern Med ; 174(9): 1261-1269, 2021 09.
Article in English | MEDLINE | ID: mdl-34251903

ABSTRACT

BACKGROUND: New treatment modalities are urgently needed for patients with COVID-19. The World Health Organization (WHO) Solidarity trial showed no effect of remdesivir or hydroxychloroquine (HCQ) on mortality, but the antiviral effects of these drugs are not known. OBJECTIVE: To evaluate the effects of remdesivir and HCQ on all-cause, in-hospital mortality; the degree of respiratory failure and inflammation; and viral clearance in the oropharynx. DESIGN: NOR-Solidarity is an independent, add-on, randomized controlled trial to the WHO Solidarity trial that included biobanking and 3 months of clinical follow-up (ClinicalTrials.gov: NCT04321616). SETTING: 23 hospitals in Norway. PATIENTS: Eligible patients were adults hospitalized with confirmed SARS-CoV-2 infection. INTERVENTION: Between 28 March and 4 October 2020, a total of 185 patients were randomly assigned and 181 were included in the full analysis set. Patients received remdesivir (n = 42), HCQ (n = 52), or standard of care (SoC) (n = 87). MEASUREMENTS: In addition to the primary end point of WHO Solidarity, study-specific outcomes were viral clearance in oropharyngeal specimens, the degree of respiratory failure, and inflammatory variables. RESULTS: No significant differences were seen between treatment groups in mortality during hospitalization. There was a marked decrease in SARS-CoV-2 load in the oropharynx during the first week overall, with similar decreases and 10-day viral loads among the remdesivir, HCQ, and SoC groups. Remdesivir and HCQ did not affect the degree of respiratory failure or inflammatory variables in plasma or serum. The lack of antiviral effect was not associated with symptom duration, level of viral load, degree of inflammation, or presence of antibodies against SARS-CoV-2 at hospital admittance. LIMITATION: The trial had no placebo group. CONCLUSION: Neither remdesivir nor HCQ affected viral clearance in hospitalized patients with COVID-19. PRIMARY FUNDING SOURCE: National Clinical Therapy Research in the Specialist Health Services, Norway.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19/virology , Hydroxychloroquine/therapeutic use , Viral Load/drug effects , Adenosine Monophosphate/therapeutic use , Alanine/therapeutic use , Antibodies, Viral/blood , Biomarkers/blood , COVID-19/complications , COVID-19/mortality , Cause of Death , Female , Hospital Mortality , Humans , Inflammation/virology , Male , Middle Aged , Norway/epidemiology , Oropharynx/virology , Respiratory Insufficiency/virology , SARS-CoV-2/immunology , Severity of Illness Index , Standard of Care , Treatment Outcome
14.
EBioMedicine ; 60: 102985, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32927275

ABSTRACT

BACKGROUND: During atherogenesis, cholesterol precipitates into cholesterol crystals (CC) in the vessel wall, which trigger plaque inflammation by activating the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome. We investigated the relationship between CC, complement and NLRP3 in patients with cardiovascular disease. METHODS: We analysed plasma, peripheral blood mononuclear cells (PBMC) and carotid plaques from patients with advanced atherosclerosis applying ELISAs, multiplex cytokine assay, qPCR, immunohistochemistry, and gene profiling. FINDINGS: Transcripts of interleukin (IL)-1beta(ß) and NLRP3 were increased and correlated in PBMC from patients with acute coronary syndrome (ACS). Priming of these cells with complement factor 5a (C5a) and tumour necrosis factor (TNF) before incubation with CC resulted in increased IL-1ß protein when compared to healthy controls. As opposed to healthy controls, systemic complement was significantly increased in patients with stable angina pectoris or ACS. In carotid plaques, complement C1q and C5b-9 complex accumulated around CC-clefts, and complement receptors C5aR1, C5aR2 and C3aR1 were higher in carotid plaques compared to control arteries. Priming human carotid plaques with C5a followed by CC incubation resulted in pronounced release of IL-1ß, IL-18 and IL-1α. Additionally, mRNA profiling demonstrated that C5a and TNF priming followed by CC incubation upregulated plaque expression of NLRP3 inflammasome components. INTERPRETATION: We demonstrate that CC are important local- and systemic complement activators, and we reveal that the interaction between CC and complement could exert its effect by activating the NLRP3 inflammasome, thus promoting the progression of atherosclerosis.


Subject(s)
Carotid Artery Diseases/etiology , Carotid Artery Diseases/metabolism , Cholesterol/metabolism , Complement System Proteins/immunology , Coronary Artery Disease/etiology , Coronary Artery Disease/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Signal Transduction , Carotid Artery Diseases/pathology , Complement C5a/immunology , Computational Biology/methods , Coronary Artery Disease/pathology , Cytokines/metabolism , Disease Susceptibility , Gene Expression Profiling , Humans , Inflammasomes/metabolism , Inflammation Mediators/metabolism , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/pathology , Liquid Crystals , Plaque, Atherosclerotic
15.
Nucleic Acids Res ; 48(8): 4463-4479, 2020 05 07.
Article in English | MEDLINE | ID: mdl-32083667

ABSTRACT

Endonuclease V (EndoV) is a conserved inosine-specific ribonuclease with unknown biological function. Here, we present the first mouse model lacking EndoV, which is viable without visible abnormalities. We show that endogenous murine EndoV cleaves inosine-containing RNA in vitro, nevertheless a series of experiments fails to link an in vivo function to processing of such transcripts. As inosine levels and adenosine-to-inosine editing often are dysregulated in hepatocellular carcinoma (HCC), we chemically induced HCC in mice. All mice developed liver cancer, however, EndoV-/- tumors were significantly fewer and smaller than wild type tumors. Opposed to human HCC, adenosine deaminase mRNA expression and site-specific editing were unaltered in our model. Loss of EndoV did not affect editing levels in liver tumors, however mRNA expression of a selection of cancer related genes were reduced. Inosines are also found in certain tRNAs and tRNAs are cleaved during stress to produce signaling entities. tRNA fragmentation was dysregulated in EndoV-/- livers and apparently, inosine-independent. We speculate that the inosine-ribonuclease activity of EndoV is disabled in vivo, but RNA binding allowed to promote stabilization of transcripts or recruitment of proteins to fine-tune gene expression. The EndoV-/- tumor suppressive phenotype calls for related studies in human HCC.


Subject(s)
Deoxyribonuclease (Pyrimidine Dimer)/genetics , Liver Neoplasms, Experimental/genetics , Adenosine/metabolism , Animals , Antineoplastic Agents/pharmacology , Carcinogenesis , Cell Line , Deoxyribonuclease (Pyrimidine Dimer)/metabolism , Gene Expression , Humans , Inosine/metabolism , Liver/metabolism , Liver Neoplasms, Experimental/chemically induced , Liver Neoplasms, Experimental/metabolism , Liver Neoplasms, Experimental/pathology , Mice, Knockout , RNA Editing , RNA, Transfer/metabolism , Sequence Analysis, RNA , Sorafenib/pharmacology
16.
Thromb Res ; 184: 1-7, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31677448

ABSTRACT

BACKGROUND: Women develop cardiovascular disease (CVD) approximately 7-10 years later than men, but progress with similar risk after menopause. Recent studies suggest that hormone replacement therapy (HRT) is cardioprotective when initiated early after menopause, but the mechanisms involved are still unclear. OBJECTIVE: In the current study, we aimed to examine the effects of HRT treatment on the plasma atherogenicity in postmenopausal women. We studied the total lipid profile in blood samples collected in a randomized, double-blinded, placebo controlled clinical trial of women with a history of venous thrombosis (VT), the EVTET study. METHODS: One-hundred and forty postmenopausal women <70 years were included in EVTET and randomized either to active treatment (one tablet of 2 mg estradiol and 1 mg norethisterone acetate daily) (n = 71) or placebo (n = 69). Blood samples were taken at baseline and after 3 months and subjected to routine assessment of hemostatic factors and lipids. RESULTS: Our study show that HRT compared to placebo significantly reduced plasma levels of Lp(a), ApoA1, ApoB, total cholesterol (TC), HDL-C, LDL-C, TC/HDL-C and LDL-C/HDL-C ratio at 3 months. No effect was observed on ApoB/ApoA1 ratio or triglycerides. The change in Lp(a) was significantly and inversely correlated with the change in estradiol (r = -0.32; P = 0.001) and positively correlated to the change in lipids, tissue factor pathway inhibitor activity and antigen, protein C and fibrinogen (r between 0.26 and 0.45, p < 0.01). CONCLUSION: In sum, this study confirms a strong effect of HRT on atherogenic lipids with a large reduction in the pro-thrombotic Lp(a), suggesting an overall favorable effect on thrombogenicity after HRT replacement therapy in post-menopausal women at risk of VT.


Subject(s)
Hormone Replacement Therapy/methods , Lipids/blood , Adult , Female , Humans , Middle Aged , Postmenopause
17.
J Immunol ; 203(6): 1598-1608, 2019 09 15.
Article in English | MEDLINE | ID: mdl-31427442

ABSTRACT

NAD+ is an essential cofactor in reduction-oxidation metabolism with impact on metabolic and inflammatory diseases. However, data elucidating the effects of NAD+ on the proinflammatory features of human primary monocytes are scarce. In this study, we explored how NAD+ affects TLR4 and NOD-like receptor with a PYD-domain 3 (NLRP3) inflammasome activation, two key innate immune responses. Human primary monocytes were isolated from buffy coats obtained from healthy individuals. Intracellular NAD+ was manipulated by nicotinamide riboside and the NAMPT inhibitor FK866. Cells were primed with LPS with or without subsequent NLRP3 activation with ATP or cholesterol crystals to analyze the effects of NAD+ levels on TLR4-mediated NF-κB activation and NLRP3 activity, respectively. Cytokine release was quantified, and the downstream signal pathway of TLR4 was investigated with Western blot and proteomic analysis. The impact of sirtuin and PARP inhibition was also explored. Our main findings were: 1) elevated NAD+ enhanced IL-1ß release in LPS-primed human monocytes exposed to ATP in vitro, 2) both NLRP3-dependent and -independent inflammatory responses in LPS-exposed monocytes were inhibited by NAD+ depletion with FK866, 3) the inhibition was not caused by suppression of sirtuins or PARP1, and 4) phosphorylation of several proteins TLR4 signal pathway was inhibited by FK866-mediated NAD+ depletion, specifically TAK1, IKKß, IkBα, MEK 1/2, ERK 1/2, and p38. Hence, we suggest a novel mechanism in which NAD+ affects TLR4 signal transduction. Furthermore, our data challenge previous reports of the interaction between NAD+ and inflammation and question the use of nicotinamide riboside in the therapy of inflammatory disorders.


Subject(s)
Inflammasomes/metabolism , Inflammation/metabolism , Monocytes/metabolism , NAD/metabolism , Signal Transduction/physiology , Toll-Like Receptor 4/metabolism , Cells, Cultured , Gene Expression Regulation/physiology , Humans , Immunity, Innate/physiology , Inflammation/chemically induced , Lipopolysaccharides/pharmacology , Macrophages/drug effects , Macrophages/metabolism , Phosphorylation/physiology , Proteomics/methods
18.
PLoS One ; 12(11): e0188387, 2017.
Article in English | MEDLINE | ID: mdl-29176764

ABSTRACT

AIM: Interleukin-27 (IL-27) is involved in different inflammatory diseases; however, its role in atherosclerosis is unclear. In this study we investigated the expression of IL-27 and its receptor in patients with carotid atherosclerosis and if IL-27 could modulate the inflammatory effects of the NLRP3 inflammasome in vitro. METHODS: Plasma IL-27 was measured by enzyme immunoassay in patients with carotid stenosis (n = 140) and in healthy controls (n = 19). Expression of IL-27 and IL-27R was analyzed by quantitative PCR and immunohistochemistry in plaques from patients and in non-atherosclerotic vessels. THP-1 monocytes, primary monocytes and peripheral blood mononuclear cells (PBMCs) were used to study effects of IL-27 in vitro. RESULTS: Our main findings were: (i) Plasma levels of IL-27 were significantly elevated in patients with carotid atherosclerotic disease compared to healthy controls. (ii) Gene expression of IL-27 and IL-27R was significantly elevated in plaques compared to control vessels, and co-localized to macrophages. (iii) In vitro, IL-27 increased NLRP3 inflammasome activation in monocytes with enhanced release of IL-1 ß. CONCLUSIONS: We demonstrate increased levels of IL-27 and IL-27R in patients with carotid atherosclerosis. Our in vitro findings suggest an inflammatory role for IL-27, which can possibly be linked to atherosclerotic disease development.


Subject(s)
Carotid Artery Diseases/metabolism , Inflammasomes/metabolism , Interleukin-27/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Aged , Antigens, CD/metabolism , Apyrase/metabolism , Carotid Artery Diseases/blood , Carotid Artery Diseases/genetics , Carotid Artery Diseases/pathology , Female , Gene Expression Regulation , Humans , Interleukin-1beta/metabolism , Interleukin-27/blood , Interleukin-27/genetics , Interleukins/metabolism , Lipopolysaccharides , Macrophages/metabolism , Male , Minor Histocompatibility Antigens/metabolism , Monocytes/metabolism , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/pathology , Receptors, Cytokine/genetics , Receptors, Cytokine/metabolism , STAT Transcription Factors/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism , Up-Regulation/genetics
19.
Thromb Res ; 155: 31-37, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28482260

ABSTRACT

INTRODUCTION: Tissue factor (TF) pathway inhibitor (TFPI) is the physiological inhibitor of TF induced blood coagulation and two isoforms exists, TFPIα and TFPIß. In atherosclerotic plaques, TFPI may inhibit TF activity and thrombus formation, which is the main cause of ischemic stroke in carotid artery disease. We aimed to identify the isoforms of TFPI present in human carotid plaques and potential sources of TFPI. MATERIALS AND METHODS: Human atherosclerotic plaques from carotid endarterectomies were used for mRNA and immunohistochemistry analyses. hPBMCs isolated from buffy coats and THP-1 cells were differentiated and polarized into M1 or M2 macrophages, and subsequently cultured with or without cholesterol crystals (CC). mRNA and protein expression were measured with qRT-PCR and ELISA, respectively, and procoagulant activity was assessed using a two-stage chromogenic assay. RESULTS: TFPIα and TFPIß mRNA levels were significantly increased in carotid plaques, whereas TF levels were unchanged as compared to healthy arteries. Antibodies against total TFPI showed elevated levels compared to antibodies against free TFPIα, both by immunohistochemical and ELISA detection in plaques. The antibody against total TFPI also co-localized with CD68 and the M1 and M2 markers CD80 and CD163, respectively. The TFPI mRNA expression was elevated and the procoagulant activity was decreased in M2 compared to M1 polarized human macrophages. TFPI was present in early foam cell formation and CC treatment increased the TFPI mRNA expression even further in M2 macrophages. CONCLUSIONS: Our data indicate that both isoforms of TFPI are present in advanced plaques and that anti-inflammatory M2 macrophages may be a potential source of TFPI.


Subject(s)
Carotid Stenosis/genetics , Lipoproteins/genetics , Plaque, Atherosclerotic/genetics , Up-Regulation , Carotid Arteries/metabolism , Carotid Arteries/pathology , Carotid Stenosis/pathology , Cell Line , Cells, Cultured , Humans , Macrophages/metabolism , Macrophages/pathology , Plaque, Atherosclerotic/pathology , Protein Isoforms/genetics , RNA, Messenger/genetics
20.
Arterioscler Thromb Vasc Biol ; 37(6): 1157-1167, 2017 06.
Article in English | MEDLINE | ID: mdl-28408371

ABSTRACT

OBJECTIVE: Extracellular nicotinamide phosphoribosyltransferase (eNAMPT) mediates inflammatory and potentially proatherogenic effects, whereas the role of intracellular NAMPT (iNAMPT), the rate limiting enzyme in the salvage pathway of nicotinamide adenine dinucleotide (NAD)+ generation, in atherogenesis is largely unknown. Here we investigated the effects of iNAMPT overexpression in leukocytes on inflammation and atherosclerosis. APPROACH AND RESULTS: Low-density lipoprotein receptor-deficient mice with hematopoietic overexpression of human iNAMPT (iNAMPThi), on a western type diet, showed attenuated plaque burden with features of lesion stabilization. This anti-atherogenic effect was caused by improved resistance of macrophages to apoptosis by attenuated chemokine (C-C motif) receptor 2-dependent monocyte chemotaxis and by skewing macrophage polarization toward an anti-inflammatory M2 phenotype. The iNAMPThi phenotype was almost fully reversed by treatment with the NAMPT inhibitor FK866, indicating that iNAMPT catalytic activity is instrumental in the atheroprotection. Importantly, iNAMPT overexpression did not induce any increase in eNAMPT, and eNAMPT had no effect on chemokine (C-C motif) receptor 2 expression and promoted an inflammatory M1 phenotype in macrophages. The iNAMPT-mediated effects at least partly involved sirtuin 1-dependent molecular crosstalk of NAMPT and peroxisome proliferator-activated receptor γ. Finally, iNAMPT and peroxisome proliferator-activated receptor γ showed a strong correlation in human atherosclerotic, but not healthy arteries, hinting to a relevance of iNAMPT/peroxisome proliferator-activated receptor γ pathway also in human carotid atherosclerosis. CONCLUSIONS: This study highlights the functional dichotomy of intracellular versus extracellular NAMPT, and unveils a critical role for the iNAMPT-peroxisome proliferator-activated receptor γ axis in atherosclerosis.


Subject(s)
Atherosclerosis/prevention & control , Cell Differentiation , Cytokines/metabolism , Leukocytes/enzymology , Macrophages/metabolism , Monocytes/metabolism , Nicotinamide Phosphoribosyltransferase/metabolism , PPAR gamma/metabolism , Aged , Animals , Apoptosis , Atherosclerosis/enzymology , Atherosclerosis/genetics , Atherosclerosis/pathology , Cells, Cultured , Cytokines/antagonists & inhibitors , Cytokines/genetics , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Female , Genetic Predisposition to Disease , Humans , Leukocytes/drug effects , Leukocytes/pathology , Macrophage Activation , Macrophages/drug effects , Macrophages/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Monocytes/drug effects , Monocytes/pathology , Nicotinamide Phosphoribosyltransferase/antagonists & inhibitors , Nicotinamide Phosphoribosyltransferase/genetics , Phenotype , Receptors, LDL/deficiency , Receptors, LDL/genetics , Signal Transduction , Sirtuin 1/metabolism , Time Factors , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...