Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Hum Genet ; 25(11): 1253-1260, 2017 11.
Article in English | MEDLINE | ID: mdl-28832569

ABSTRACT

Here we describe the SweGen data set, a comprehensive map of genetic variation in the Swedish population. These data represent a basic resource for clinical genetics laboratories as well as for sequencing-based association studies by providing information on genetic variant frequencies in a cohort that is well matched to national patient cohorts. To select samples for this study, we first examined the genetic structure of the Swedish population using high-density SNP-array data from a nation-wide cohort of over 10 000 Swedish-born individuals included in the Swedish Twin Registry. A total of 1000 individuals, reflecting a cross-section of the population and capturing the main genetic structure, were selected for whole-genome sequencing. Analysis pipelines were developed for automated alignment, variant calling and quality control of the sequencing data. This resulted in a genome-wide collection of aggregated variant frequencies in the Swedish population that we have made available to the scientific community through the website https://swefreq.nbis.se. A total of 29.2 million single-nucleotide variants and 3.8 million indels were detected in the 1000 samples, with 9.9 million of these variants not present in current databases. Each sample contributed with an average of 7199 individual-specific variants. In addition, an average of 8645 larger structural variants (SVs) were detected per individual, and we demonstrate that the population frequencies of these SVs can be used for efficient filtering analyses. Finally, our results show that the genetic diversity within Sweden is substantial compared with the diversity among continental European populations, underscoring the relevance of establishing a local reference data set.


Subject(s)
Genome, Human , Polymorphism, Single Nucleotide , Registries , Datasets as Topic , Genome-Wide Association Study , Humans , Sweden , Twins/genetics
2.
BMC Genomics ; 15: 1090, 2014 Dec 11.
Article in English | MEDLINE | ID: mdl-25495354

ABSTRACT

BACKGROUND: Massively parallel DNA sequencing (MPS) has the potential to revolutionize diagnostics, in particular for monogenic disorders. Inborn errors of metabolism (IEM) constitute a large group of monogenic disorders with highly variable clinical presentation, often with acute, nonspecific initial symptoms. In many cases irreversible damage can be reduced by initiation of specific treatment, provided that a correct molecular diagnosis can be rapidly obtained. MPS thus has the potential to significantly improve both diagnostics and outcome for affected patients in this highly specialized area of medicine. RESULTS: We have developed a conceptually novel approach for acute MPS, by analysing pulsed whole genome sequence data in real time, using automated analysis combined with data reduction and parallelization. We applied this novel methodology to an in-house developed customized work flow enabling clinical-grade analysis of all IEM with a known genetic basis, represented by a database containing 474 disease genes which is continuously updated. As proof-of-concept, two patients were retrospectively analysed in whom diagnostics had previously been performed by conventional methods. The correct disease-causing mutations were identified and presented to the clinical team after 15 and 18 hours from start of sequencing, respectively. With this information available, correct treatment would have been possible significantly sooner, likely improving outcome. CONCLUSIONS: We have adapted MPS to fit into the dynamic, multidisciplinary work-flow of acute metabolic medicine. As the extent of irreversible damage in patients with IEM often correlates with timing and accuracy of management in early, critical disease stages, our novel methodology is predicted to improve patient outcome. All procedures have been designed such that they can be implemented in any technical setting and to any genetic disease area. The strategy conforms to international guidelines for clinical MPS, as only validated disease genes are investigated and as clinical specialists take responsibility for translation of results. As follow-up in patients without any known IEM, filters can be lifted and the full genome investigated, after genetic counselling and informed consent.


Subject(s)
High-Throughput Nucleotide Sequencing , Metabolism, Inborn Errors/diagnosis , Computational Biology , Databases, Genetic , Genome, Human , Humans , Metabolism, Inborn Errors/genetics , Pyruvate Dehydrogenase (Lipoamide)/genetics , Sequence Analysis, DNA
3.
Mol Cell Proteomics ; 11(7): M112.016998, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22499770

ABSTRACT

Vulvar squamous cell carcinoma (VSCC) is the fourth most common gynecological cancer. Based on etiology VSCC is divided into two subtypes; one related to high-risk human papilloma virus (HPV) and one HPV negative. The two subtypes are proposed to develop via separate intracellular signaling pathways. We investigated a suggested link between HPV infection and relapse risk in VSCC through in-depth protein profiling of 14 VSCC tumor specimens. The tumor proteomes were analyzed by liquid-chromatography tandem mass spectrometry. Relative protein quantification was performed by 8-plex isobaric tags for relative and absolute quantification. Labeled peptides were fractionated by high-resolution isoelectric focusing prior to liquid-chromatography tandem mass spectrometry to reduce sample complexity. In total, 1579 proteins were regarded as accurately quantified and analyzed further. For classification of clinical groups, data analysis was performed by comparing protein level differences between tumors defined by HPV and/or relapse status. Further, we performed a biological analysis on individual tumor proteomes by matching data to known biological pathways. We here present a novel analysis approach that combines pathway alteration data on individual tumor level with multivariate statistics for HPV and relapse status comparisons. Four proteins (signal transducer and activator of transcription-1, myxovirus resistance protein 1, proteasome subunit alpha type-5 and legumain) identified as main classifiers of relapse status were validated by immunohistochemistry (IHC). Two of the proteins are interferon-regulated and on mRNA level known to be repressed by HPV. By both liquid-chromatography tandem mass spectrometry and immunohistochemistry data we could single out a subgroup of HPV negative/relapse-associated tumors. The pathway level data analysis confirmed three of the proteins, and further identified the ubiquitin-proteasome pathway as altered in the high risk subgroup. We show that pathway fingerprinting with resolution on individual tumor level adds biological information that strengthens a generalized protein analysis.


Subject(s)
Biomarkers, Tumor/genetics , Carcinoma, Squamous Cell/genetics , Neoplasm Proteins/genetics , Papillomavirus Infections/genetics , Vulvar Neoplasms/genetics , Aged , Aged, 80 and over , Biomarkers, Tumor/metabolism , Carcinoma, Squamous Cell/complications , Carcinoma, Squamous Cell/diagnosis , Chromatography, Liquid , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Female , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , Gene Expression Regulation, Neoplastic , Humans , Isoelectric Focusing , Middle Aged , Multivariate Analysis , Myxovirus Resistance Proteins , Neoplasm Proteins/metabolism , Papillomaviridae/physiology , Papillomavirus Infections/complications , Papillomavirus Infections/diagnosis , Proteasome Endopeptidase Complex/genetics , Proteasome Endopeptidase Complex/metabolism , Proteomics , Recurrence , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , Staining and Labeling , Tandem Mass Spectrometry , Vulvar Neoplasms/complications , Vulvar Neoplasms/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...