Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Hazard Mater ; 433: 128770, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35364529

ABSTRACT

Field-weathered crude oil-containing soils have a residual concentration of hydrocarbons with complex chemical structure, low solubility, and high viscosity, often poorly amenable to microbial degradation. Hydrogen peroxide (H2O2)-based oxidation can generate oxygenated compounds that are smaller and/or more soluble and thus increase petroleum hydrocarbon biodegradability. In this study, we assessed the efficacy of H2O2-based oxidation under unsaturated soil conditions to promote biodegradation in a field-contaminated and weathered soil containing high concentrations of total petroleum hydrocarbons (25200 mg TPH kg-1) and total organic carbon (80900 mg TOC kg-1). Microcosms amended with three doses of 48 g H2O2 kg-1 soil (unactivated or Fe2+-activated) or 24 g sodium percarbonate kg-1 soil and nutrients did not show substantial TPH changes during the experiment. However, 7.6-41.8% of the TOC concentration was removed. Furthermore, production of DOC was enhanced and highest in the microcosms with oxidants, with approximately 20-40-fold DOC increase by the end of incubation. In the absence of oxidants, biostimulation led to > 50% TPH removal in 42 days. Oxidants limited TPH biodegradation by diminishing the viable concentration of microorganisms, altering the composition of the soil microbial communities, and/or creating inhibitory conditions in soil. Study's findings underscore the importance of soil characteristics and petroleum hydrocarbon properties and inform on potential limitations of combined H2O2 oxidation and biodegradation in weathered soils.


Subject(s)
Petroleum , Soil Pollutants , Biodegradation, Environmental , Hydrocarbons/metabolism , Hydrogen Peroxide , Oxidants , Peroxides , Petroleum/metabolism , Soil/chemistry , Soil Microbiology , Soil Pollutants/metabolism
2.
Environ Sci Technol ; 54(12): 7117-7125, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32408743

ABSTRACT

Controlled pressure method (CPM) testing is a building-specific diagnostic tool for vapor intrusion (VI) pathway assessment which offers advantages over traditional pathway assessment approaches. By manipulating the building pressure conditions, the CPM creates the worst-case VI impact and provides rapid insight into the type of vapor source(s). The primary barrier to general acceptance and use of this tool is the need for definitive guidance on test design parameters, such as the indoor-outdoor pressure difference (or exhaust fan flow rate), CPM test duration, exhaust fan location, and air sampling location(s) and conditions. This study focused on a systematic evaluation of each of these factors, which then led to the formulation of proposed CPM testing guidelines. The results suggest that CPM tests should be conducted with both negative and positive pressure indoor-outdoor differentials of about 10-15 Pa, and the tests should last for at least nine indoor air exchanges for negative pressure difference testing and four indoor air exchanges for positive pressure difference testing. Although exhaust fan intake sampling is sufficient to provide critical information to assess impacts during negative pressure testing, adding room-specific indoor air sampling to both negative and positive pressure difference testing can provide insight into vapor entry locations and indoor source contributions.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Air Pollutants/analysis , Air Pollution, Indoor/analysis , Gases/analysis , Vehicle Emissions
3.
Sci Total Environ ; 702: 134756, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31731126

ABSTRACT

Some subsurface sewer and land drain networks will facilitate the migration of chlorinated volatile organic compounds (CVOCs) from dissolved contaminant groundwater plumes to indoor air. As this vapor intrusion (VI) pathway has only recently been documented, guidance for evaluating it, including recommendations for timing, frequency, duration and location for vapor sampling in subsurface piping networks is non-existent. To address this gap, a three-year investigation of CVOC concentrations from land drains, storm drains, and sanitary sewers was undertaken in a neighborhood overlying a large-scale dissolved chlorinated VOC (CVOC) groundwater plume. Vapor sampling included the collection of grab (time-discrete) samples from up to 277 manholes, hourly grab sampling from three manhole locations, and 24-h duration collection during week-long sampling from 13 land drain and sewer manholes. The spatial distribution of vapor and water concentrations and the temporal variations in the vapor values observed in this study suggest that week-long vapor sampling conducted at different times of the year and with samples collected at manhole locations overlying and outside a dissolved plume might be needed to ensure robust VI pathway assessment at other sites. These findings are expected to be of relevance to regulatory agencies involved in the development of current or future VI pathway assessment guidance.

4.
Environ Sci Technol ; 52(18): 10637-10646, 2018 09 18.
Article in English | MEDLINE | ID: mdl-30119597

ABSTRACT

It is accepted that indoor sources of volatile organic compounds can confound vapor intrusion (VI) pathway assessment. When they are discovered during pre-sampling inspection, indoor sources are removed and air sampling is delayed, with the assumption that a few hours to a few days are sufficient for indoor source impacts to dissipate. This assumption was tested through the controlled release of SF6 and its monitoring in indoor air and soil gas at a study house over 2 years. Results show that indoor sources generate subsurface soil gas clouds as a result of fluctuating direction in the exchange between soil gas and indoor air and that it may take days to weeks under natural conditions for a soil gas cloud beneath a building to dissipate following indoor source removal. The data also reveal temporal variability in indoor air and soil gas concentrations, long-term seasonal patterns, and dissipation of soil gas clouds over days to weeks following source removal. Preliminary modeling results for similar conditions are consistent field observations. If representative of other sites, these results suggest that a typical 1-3 day waiting period following indoor source removal may not be sufficient to avoid confounding data and erroneous conclusions regarding VI occurrence.


Subject(s)
Air Pollutants , Air Pollution, Indoor , Volatile Organic Compounds , Gases , Soil
5.
Chemosphere ; 195: 742-748, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29289020

ABSTRACT

Remediation of polluted groundwater often requires oxygen delivery into subsurface to sustain aerobic bacteria. Air sparging or injection of oxygen containing solutions (e.g., hydrogen peroxide) into the subsurface are common. In this study visible light was delivered into the subsurface using radially emitting optical fibers. Phototrophic organisms grew near the optical fiber in a saturated sand column. When applying light in on-off cycles, dissolved oxygen (DO) varied from super saturation levels of >15 mg DO/L in presence of light to under-saturation (<5 mg DO/L) in absence of light. Non-photosynthetic bacteria dominated at longer radial distances from the fiber, presumably supported by soluble microbial products produced by the photosynthetic microorganisms. The dissolved oxygen variations alter redox condition changes in response to light demonstrate the potential to biologically deliver oxygen into the subsurface and support a diverse microbial community. The ability to deliver oxygen and modulate redox conditions on diurnal cycles using solar light may provide a sustainable, long term strategy for increasing dissolved oxygen levels in subsurface environments and maintaining diverse biological communities.


Subject(s)
Bacteria, Aerobic/metabolism , Biodegradation, Environmental , Optical Fibers , Oxygen/metabolism , Photobioreactors/microbiology , Photosynthesis/physiology , Bacteria, Aerobic/growth & development , Groundwater/chemistry , Hydrogen Peroxide/chemistry , Light , Oxidation-Reduction
6.
Environ Sci Technol ; 49(22): 13472-82, 2015 Nov 17.
Article in English | MEDLINE | ID: mdl-26458025

ABSTRACT

Vapor intrusion (VI) pathway assessment and data interpretation have been guided by an historical conceptual model in which vapors originating from contaminated soil or groundwater diffuse upward through soil and are swept into a building by soil gas flow induced by building underpressurization. Recent studies reveal that alternative VI pathways involving neighborhood sewers, land drains, and other major underground piping can also be significant VI contributors, even to buildings beyond the delineated footprint of soil and groundwater contamination. This work illustrates how controlled-pressure-method testing (CPM), soil gas sampling, and screening-level emissions calculations can be used to identify significant alternative VI pathways that might go undetected by conventional sampling under natural conditions at some sites. The combined utility of these tools is shown through data collected at a long-term study house, where a significant alternative VI pathway was discovered and altered so that it could be manipulated to be on or off. Data collected during periods of natural and CPM conditions show that the alternative pathway was significant, but its presence was not identifiable under natural conditions; it was identified under CPM conditions when measured emission rates were 2 orders of magnitude greater than screening-model estimates and subfoundation vertical soil gas profiles changed and were no longer consistent with the conventional VI conceptual model.


Subject(s)
Gases , Groundwater , Models, Theoretical , Soil , Environmental Pollution , Groundwater/chemistry , Housing , Pressure , Soil/chemistry
7.
Environ Sci Technol ; 49(4): 2091-8, 2015 Feb 17.
Article in English | MEDLINE | ID: mdl-25604884

ABSTRACT

Vapor intrusion (VI) investigations often require sampling of indoor air for evaluating occupant risks, but can be confounded by temporal variability and the presence of indoor sources. Controlled pressure methods (CPM) have been proposed as an alternative, but temporal variability of CPM results and whether they are indicative of impacts under natural conditions have not been rigorously investigated. This study is the first involving a long-term CPM test at a house having a multiyear high temporal resolution indoor air data set under natural conditions. Key observations include (a) CPM results exhibited low temporal variability, (b) false-negative results were not obtained, (c) the indoor air concentrations were similar to the maximum concentrations under natural conditions, and (d) results exceeded long-term average concentrations and emission rates under natural conditions by 1-2 orders of magnitude. Thus, the CPM results were a reliable indicator of VI occurrence and worst-case exposure regardless of day or time of year of the CPM test.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Air Pressure , Environmental Monitoring/methods , Housing , Volatile Organic Compounds/analysis , Humans , Risk Assessment , Time Factors , Volatilization
8.
Environ Sci Technol ; 48(9): 5127-35, 2014 May 06.
Article in English | MEDLINE | ID: mdl-24716993

ABSTRACT

Aquifer physical model experiments were performed to investigate if diffusive emissions from nonaqueous phase liquid (NAPL)-impacted low-permeability layers into groundwater moving through adjacent NAPL-free high-permeability layers can be reduced by creating an aerobic biotreatment zone at the interface between the two, and if over time that leads to reduced emissions after treatment ceases. Experiments were performed in two 1.2-m long × 1.2-m high × 5.4 cm wide stainless steel tanks; each with a high-permeability sand layer overlying a low-permeability crushed granite layer containing a NAPL mixture of indane and benzene. Each tank was water-saturated with horizontal flow primarily through the sand layer. The influent water was initially deoxygenated and the emissions and concentration distributions were allowed to reach near-steady conditions. The influent dissolved oxygen (DO) level was increased stepwise to 6.5-8.5 mg/L and 17-20 mg/L, and then decreased back to deoxygenated conditions. Each condition was maintained for at least 45 days. Relative to the near-steady benzene emission at the initial deoxygenated condition, the emission was reduced by about 70% when the DO was 6.5-8.5 mg/L, 90% when the DO was 17-20 mg/L, and ultimately 60% when returning to low DO conditions. While the reductions were substantial during treatment, longer-term reductions after 120 d of elevated DO treatment, relative to an untreated condition predicted by theory, were low: 29% and 6% in Tank 1 and Tank 2, respectively. Results show a 1-2 month lag between the end of DO delivery and rebound to the final near-steady emissions level. This observation has implications for post-treatment performance monitoring sampling at field sites.


Subject(s)
Groundwater/chemistry , Oxygen/chemistry , Soil/chemistry , Water Movements , Diffusion , Geologic Sediments/chemistry , Permeability , Solubility
9.
Environ Sci Technol ; 47(23): 13347-54, 2013.
Article in English | MEDLINE | ID: mdl-24180600

ABSTRACT

Current vapor intrusion (VI) pathway assessment heavily weights concentrations from infrequent (monthly-seasonal) 24 h indoor air samples. This study collected a long-term and high-frequency data set that can be used to assess indoor air sampling strategies for answering key pathway assessment questions like: "Is VI occurring?", and "Will VI impacts exceed thresholds of concern?". Indoor air sampling was conducted for 2.5 years at 2-4 h intervals in a house overlying a dilute chlorinated solvent plume (10-50 µg/L TCE). Indoor air concentrations varied by 3 orders of magnitude (<0.01-10 ppbv TCE) with two recurring behaviors. The VI-active behavior, which was prevalent in fall, winter, and spring involved time-varying impacts intermixed with sporadic periods of inactivity; the VI-dormant behavior, which was prevalent in the summer, involved long periods of inactivity with sporadic VI impacts. These data were used to study outcomes of three simple sparse data sampling plans; the probabilities of false-negative and false-positive decisions were dependent on the ratio of the (action level/true mean of the data), the number of exceedances needed, and the sampling strategy. The analysis also suggested a significant potential for poor characterization of long-term mean concentrations with sparse sampling plans. The results point to a need for additional dense data sets and further investigation into the robustness of possible VI assessment paradigms. As this is the first data set of its kind, it is unknown if the results are representative of other VI-sites.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Housing , Solvents/analysis , Trichloroethylene/analysis , Environmental Monitoring , Groundwater/analysis , Seasons , Water Pollutants, Chemical/analysis
10.
Environ Sci Technol ; 47(4): 1977-84, 2013 Feb 19.
Article in English | MEDLINE | ID: mdl-23346904

ABSTRACT

A proof-of-concept study was conducted to evaluate an alternative to traditional extraction-based subslab vapor mitigation systems at sites with petroleum hydrocarbon and/or methane vapor impact concerns. The system utilizes the slow delivery of air beneath a foundation to attenuate vapor migration to the building via aerobic biodegradation. The study was conducted at a site having elevated hydrocarbon plus methane and depleted O(2) vapor concentrations (160 mg/L and <1% v/v, respectively) beneath a building having a 195 m(2) footprint and a basement extending 1.5 m below ground surface (BGS). Nonaqueous phase liquid (NAPL)-impacted soils, first encountered at about 7.6 to 9.1 m BGS, were the source of hydrocarbon and methane vapors, with the latter being generated by anaerobic methanagenesis of the former. O(2) concentrations beneath and around the building were monitored prior to and during air injection through a horizontal well installed about 1.5 m beneath the foundation. The air injection rate was increased from 1 to 5 to 10 L/min, with each held steady until the O(2) distribution stabilized (46-60 d). The 10 L/min flow rate achieved >5% v/v soil gas O(2) concentrations beneath the foundation and spanning a 1.5 m vertical interval. It was within 3× of the pretest stoichiometric requirement estimate of 3.8 L/min. This resulted in reductions in subslab hydrocarbon plus methane concentrations from 80 to <0.01 mg/L and benzene, toluene, ethylbenzene, and xylenes (BTEX) reductions to below detection limits (0.5-0.74 ppb(v)). This air injection rate is <1% of flows for typical extraction-based mitigation systems.


Subject(s)
Air Pollution, Indoor/prevention & control , Petroleum Pollution , Soil Pollutants , Algorithms , Equipment Design , Feasibility Studies
11.
Environ Sci Technol ; 42(15): 5534-40, 2008 Aug 01.
Article in English | MEDLINE | ID: mdl-18754472

ABSTRACT

Modeling and field study results suggest that, in the case of a building overlying an aerobically biodegradable vapor source (i.e., petroleum-impacted soil), the significance of vapor intrusion into the building depends on the source vapor concentration, the relative position of the vapor source and building, and the rate of O2 transport from the atmosphere to the soil gas beneath the building. This work quantified the latter at a house having about a 250 m2 slab-on-grade foundation footprint. It was constructed on 1.5 m of clean fill overlying a petroleum hydrocarbon-impacted soil layer undergoing methanogenesis. Soil gas O2 and CH4 profiles adjacent to and beneath the foundation were measured and then the soil gas beneath the slab was rapidly displaced with N2. The natural replenishment of O2 was monitored for 90 days using in situ O2 sensors, and the responses with time were similar, independent of location. The O2 replenishment rate was about 2500 g-O2/d immediately after the N2 flood and then it declined to 200-500 g-O2/d over 30 days. Weather events affected the O2 replenishment rate; an increase occurred during a strong wind period (> 3 m/s), and a decrease occurred during a heavy rainfall event. The spatial and temporal patterns in the O2 sensor responses and quantified O2 replenishment rates could not be accounted for by simple mechanistic hypotheses involving lateral diffusion or advection through the bulk soil, and instead the data suggest rapid replenishment immediately below the foundation followed by downward diffusion.


Subject(s)
Air Pollutants/analysis , Air Pollution, Indoor/analysis , Construction Materials , Housing , Oxygen/analysis , Petroleum/analysis , Soil Pollutants/analysis , Air Movements , Air Pollutants/chemistry , Atmosphere/chemistry , Diffusion , Gases/analysis , Gases/chemistry , Hydrocarbons/analysis , Methane/analysis , Nitrogen/analysis , Oxygen/chemistry , Risk Assessment , Soil Pollutants/chemistry , Time Factors , Volatilization , Wind
SELECTION OF CITATIONS
SEARCH DETAIL
...