Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 17(4): e0267034, 2022.
Article in English | MEDLINE | ID: mdl-35468162

ABSTRACT

Acroporid corals are one of the most important corals in the Caribbean because of their role in building coral reefs. Unfortunately, Acropora corals have suffered a severe decline in the last 50 years thus prompting the development of many restoration practices, such as coral nurseries, to increase the abundance of these species. However, many coral nursery designs require constant visits and maintenance limiting restoration to more convenient sites. Additionally, most studies lack the details required for practitioners to make informed decisions about replicating nursery designs. Two line nurseries were monitored for three years in The Bahamas to assess the survival of corals, Acropora cervicornis and Acropora palmata, as well as evaluate the durability and cost effectiveness of the nursery design. Survivorship ranged from 70 to 97% with one location experiencing significantly higher survivorship. The initial year build-out cost was high for a nursery, $22.97 per coral, but each nursery was comprised of specific materials that could withstand high storm conditions. Some unique aspects of the design included the use of longline clips and large-diameter monofilament lines which allowed for easier adjustments and more vigorous cleaning. The design proved to be very durable with materials showing a life expectancy of five years or more. Additionally, the design was able to withstand multiple hurricanes and winter storm conditions with little to no damage. Only two maintenance visits a year were required reducing costs after construction. After three years, this nursery design showed promising durability of materials and survivorship of both Acropora cervicornis and Acropora palmata despite being serviced just twice a year.


Subject(s)
Anthozoa , Animals , Bahamas , Caribbean Region , Coral Reefs
2.
Proc Biol Sci ; 288(1961): 20211613, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34666521

ABSTRACT

The rapid loss of reef-building corals owing to ocean warming is driving the development of interventions such as coral propagation and restoration, selective breeding and assisted gene flow. Many of these interventions target naturally heat-tolerant individuals to boost climate resilience, but the challenges of quickly and reliably quantifying heat tolerance and identifying thermotolerant individuals have hampered implementation. Here, we used coral bleaching automated stress systems to perform rapid, standardized heat tolerance assays on 229 colonies of Acropora cervicornis across six coral nurseries spanning Florida's Coral Reef, USA. Analysis of heat stress dose-response curves for each colony revealed a broad range in thermal tolerance among individuals (approx. 2.5°C range in Fv/Fm ED50), with highly reproducible rankings across independent tests (r = 0.76). Most phenotypic variation occurred within nurseries rather than between them, pointing to a potentially dominant role of fixed genetic effects in setting thermal tolerance and widespread distribution of tolerant individuals throughout the population. The identification of tolerant individuals provides immediately actionable information to optimize nursery and restoration programmes for Florida's threatened staghorn corals. This work further provides a blueprint for future efforts to identify and source thermally tolerant corals for conservation interventions worldwide.


Subject(s)
Anthozoa , Thermotolerance , Animals , Anthozoa/physiology , Censuses , Coral Reefs , Florida
3.
Ecol Appl ; 21(2): 343-9, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21563567

ABSTRACT

We quantified how two human impacts (overfishing and habitat fragmentation) in nearshore marine ecosystems may affect ecosystem function by altering the role of fish as nutrient vectors. We empirically quantified size-specific excretion rates of one of the most abundant fishes (gray snapper, Lutjanus griseus) in The Bahamas and combined these with surveys of fish abundance to estimate population-level excretion rates. The study was conducted across gradients of two human disturbances: overfishing and ecosystem fragmentation (estuaries bisected by roads), to evaluate how each could result in reduced population-level nutrient cycling by consumers. Mean estimated N and P excretion rates for gray snapper populations were on average 456% and 541% higher, respectively, in unfished sites. Ecosystem fragmentation resulted in significant reductions of recycling rates by snapper, with degree of creek fragmentation explaining 86% and 72% of the variance in estimated excretion for dissolved N and P, respectively. Additionally, we used nutrient limitation assays and primary producer nutrient content to provide a simple example of how marine fishery declines may affect primary production. This study provides an initial step toward integrating marine fishery declines and consumer-driven nutrient recycling to more fully understand the implications of human impacts in marine ecosystems.


Subject(s)
Ecosystem , Environment , Environmental Monitoring , Fisheries , Human Activities , Perciformes/physiology , Animals , Nitrogen/chemistry , Nitrogen/metabolism , Phosphorus/chemistry , Phosphorus/metabolism
4.
Ecol Appl ; 18(7): 1689-701, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18839764

ABSTRACT

Habitat maps are frequently invoked as surrogates of biodiversity to aid the design of networks of marine reserves. Maps are used to maximize habitat heterogeneity in reserves because this is likely to maximize the number of species protected. However, the technique's efficacy is limited by intra-habitat variability in the species present and their abundances. Although communities are expected to vary among patches of the same habitat, this variability is poorly documented and rarely incorporated into reserve planning. To examine intra-habitat variability in coral-reef fishes, we generated a data set from eight tropical coastal habitats and six islands in the Bahamian archipelago using underwater visual censuses. Firstly, we provide further support for habitat heterogeneity as a surrogate of biodiversity as each predefined habitat type supported a distinct assemblage of fishes. Intra-habitat variability in fish community structure at scales of hundreds of kilometers (among islands) was significant in at least 75% of the habitats studied, depending on whether presence/absence, density, or biomass data were used. Intra-habitat variability was positively correlated with the mean number of species in that habitat when density and biomass data were used. Such relationships provide a proxy for the assessment of intra-habitat variability when detailed quantitative data are scarce. Intra-habitat variability was examined in more detail for one habitat (forereefs visually dominated by Montastraea corals). Variability in community structure among islands was driven by small, demersal families (e.g., territorial pomacentrid and labrid fishes). Finally, we examined the ecological and economic significance of intra-habitat variability in fish assemblages on Montastraea reefs by identifying how this variability affects the composition and abundances of fishes in different functional groups, the key ecosystem process of parrotfish grazing, and the ecosystem service of value of commercially important finfish. There were significant differences in a range of functional groups and grazing, but not fisheries value. Variability at the scale of tens of kilometers (among reefs around an island) was less than that among islands. Caribbean marine reserves should be replicated at scales of hundreds of kilometers, particularly for species-rich habitats, to capture important intra-habitat variability in community structure, function, and an ecosystem process.


Subject(s)
Fisheries/economics , Fishes/physiology , Tropical Climate , Animals , Ecosystem , Geography , Oceans and Seas
5.
Conserv Biol ; 22(4): 941-51, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18477024

ABSTRACT

Habitat maps are often the core spatially consistent data set on which marine reserve networks are designed, but their efficacy as surrogates for species richness and applicability to other conservation measures is poorly understood. Combining an analysis of field survey data, literature review, and expert assessment by a multidisciplinary working group, we examined the degree to which Caribbean coastal habitats provide useful planning information on 4 conservation measures: species richness, the ecological functions of fish species, ecosystem processes, and ecosystem services. Approximately one-quarter to one-third of benthic invertebrate species and fish species (disaggregated by life phase; hereafter fish species) occurred in a single habitat, and Montastraea-dominated forereefs consistently had the highest richness of all species, processes, and services. All 11 habitats were needed to represent all 277 fish species in the seascape, although reducing the conservation target to 95% of species approximately halved the number of habitats required to ensure representation. Species accumulation indices (SAIs) were used to compare the efficacy of surrogates and revealed that fish species were a more appropriate surrogate of benthic species (SAI = 71%) than benthic species were for fishes (SAI = 42%). Species of reef fishes were also distributed more widely across the seascape than invertebrates and therefore their use as a surrogate simultaneously included mangroves, sea grass, and coral reef habitats. Functional classes of fishes served as effective surrogates of fish and benthic species which, given their ease to survey, makes them a particularly useful measure for conservation planning. Ecosystem processes and services exhibited great redundancy among habitats and were ineffective as surrogates of species. Therefore, processes and services in this case were generally unsuitable for a complementarity-based approach to reserve design. In contrast, the representation of species or functional classes ensured inclusion of all processes and services in the reserve network.


Subject(s)
Anthozoa/physiology , Conservation of Natural Resources/methods , Ecosystem , Environmental Monitoring/methods , Animals , Fisheries , Fishes , Forestry , Human Activities , Plants , Population Dynamics
6.
Proc Natl Acad Sci U S A ; 104(20): 8362-7, 2007 May 15.
Article in English | MEDLINE | ID: mdl-17488824

ABSTRACT

Reduced fishing pressure and weak predator-prey interactions within marine reserves can create trophic cascades that increase the number of grazing fishes and reduce the coverage of macroalgae on coral reefs. Here, we show that the impacts of reserves extend beyond trophic cascades and enhance the process of coral recruitment. Increased fish grazing, primarily driven by reduced fishing, was strongly negatively correlated with macroalgal cover and resulted in a 2-fold increase in the density of coral recruits within a Bahamian reef system. Our conclusions are robust because four alternative hypotheses that may generate a spurious correlation between grazing and coral recruitment were tested and rejected. Grazing appears to influence the density and community structure of coral recruits, but no detectable influence was found on the overall size-frequency distribution, community structure, or cover of corals. We interpret this absence of pattern in the adult coral community as symptomatic of the impact of a recent disturbance event that masks the recovery trajectories of individual reefs. Marine reserves are not a panacea for conservation but can facilitate the recovery of corals from disturbance and may help sustain the biodiversity of organisms that depend on a complex three-dimensional coral habitat.


Subject(s)
Anthozoa/physiology , Conservation of Natural Resources , Food Chain , Animals , Biodiversity , Eukaryota/physiology , Fishes/physiology , Larva , Models, Biological , Predatory Behavior/physiology
7.
Adv Mar Biol ; 50: 57-189, 2006.
Article in English | MEDLINE | ID: mdl-16782451

ABSTRACT

Caribbean coral reef habitats, seagrass beds and mangroves provide important goods and services both individually and through functional linkages. A range of anthropogenic factors are threatening the ecological and economic importance of these habitats and it is vital to understand how ecosystem processes vary across seascapes. A greater understanding of processes will facilitate further insight into the effects of disturbances and assist with assessing management options. Despite the need to study processes across whole seascapes, few spatially explicit ecosystem-scale assessments exist. We review the empirical literature to examine the role of different habitat types for a range of processes. The importance of each of 10 generic habitats to each process is defined as its "functional value" (none, low, medium or high), quantitatively derived from published data wherever possible and summarised in a single figure. This summary represents the first time the importance of habitats across an entire Caribbean seascape has been assessed for a range of processes. Furthermore, we review the susceptibility of each habitat to disturbances to investigate spatial patterns that might affect functional values. Habitat types are considered at the scale discriminated by remotely-sensed imagery and we envisage that functional values can be combined with habitat maps to provide spatially explicit information on processes across ecosystems. We provide examples of mapping the functional values of habitats for populations of three commercially important species. The resulting data layers were then used to generate seascape-scale assessments of "hot spots" of functional value that might be considered priorities for conservation. We also provide an example of how the literature reviewed here can be used to parameterise a habitat-specific model investigating reef resilience under different scenarios of herbivory. Finally, we use multidimensional scaling to provide a basic analysis of the overall functional roles of different habitats. The resulting ordination suggests that each habitat has a unique suite of functional values and, potentially, a distinct role within the ecosystem. This review shows that further data are required for many habitat types and processes, particularly forereef and escarpment habitats on reefs and for seagrass beds and mangroves. Furthermore, many data were collected prior to the regional mass mortality of Diadema and Acropora, and subsequent changes to benthic communities have, in many cases, altered a habitat's functional value, hindering the use of these data for parameterising maps and models. Similarly, few data exist on how functional values change when environmental parameters, such as water clarity, are altered by natural or anthropogenic influences or the effects of a habitat's spatial context within the seascape. Despite these limitations, sufficient data are available to construct maps and models to better understand tropical marine ecosystem processes and assist more effective mitigation of threats that alter habitats and their functional values.


Subject(s)
Alismatales/physiology , Anthozoa/physiology , Ecosystem , Environment , Fishes/physiology , Rhizophoraceae/physiology , Algorithms , Animals , Biodiversity , Caribbean Region , Feeding Behavior/physiology , Fishes/classification , Gastropoda/physiology , Geologic Sediments , Models, Biological , Nitrogen Fixation , Palinuridae/physiology , Photosynthesis , Population Density , Tropical Climate , Water Movements
8.
Science ; 311(5757): 98-101, 2006 Jan 06.
Article in English | MEDLINE | ID: mdl-16400152

ABSTRACT

Since the mass mortality of the urchin Diadema antillarum in 1983, parrotfishes have become the dominant grazer on Caribbean reefs. The grazing capacity of these fishes could be impaired if marine reserves achieve their long-term goal of restoring large consumers, several of which prey on parrotfishes. Here we compare the negative impacts of enhanced predation with the positive impacts of reduced fishing mortality on parrotfishes inside reserves. Because large-bodied parrotfishes escape the risk of predation from a large piscivore (the Nassau grouper), the predation effect reduced grazing by only 4 to 8%. This impact was overwhelmed by the increase in density of large parrotfishes, resulting in a net doubling of grazing. Increased grazing caused a fourfold reduction in the cover of macroalgae, which, because they are the principal competitors of corals, highlights the potential importance of reserves for coral reef resilience.


Subject(s)
Anthozoa , Conservation of Natural Resources , Ecosystem , Fishes , Perciformes , Animals , Anthozoa/growth & development , Bahamas , Biomass , Body Size , Fisheries , Perciformes/anatomy & histology , Population Density , Population Dynamics , Predatory Behavior
SELECTION OF CITATIONS
SEARCH DETAIL
...