Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Cell Chem Biol ; 31(2): 221-233.e14, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-37875111

ABSTRACT

Methotrexate (MTX) is a tight-binding dihydrofolate reductase (DHFR) inhibitor, used as both an antineoplastic and immunosuppressant therapeutic. MTX, like folate undergoes folylpolyglutamate synthetase-mediated γ-glutamylation, which affects cellular retention and target specificity. Mechanisms of MTX resistance in cancers include a decrease in MTX poly-γ-glutamylation and an upregulation of DHFR. Here, we report a series of potent MTX-based proteolysis targeting chimeras (PROTACs) to investigate DHFR degradation pharmacology and one-carbon biochemistry. These on-target, cell-active PROTACs show proteasome- and E3 ligase-dependent activity, and selective degradation of DHFR in multiple cancer cell lines. By comparison, treatment with MTX increases cellular DHFR protein expression. Importantly, these PROTACs produced distinct, less-lethal phenotypes compared to MTX. The chemical probe set described here should complement conventional DHFR inhibitors and serve as useful tools for studying one-carbon biochemistry and dissecting complex polypharmacology of MTX and related drugs. Such compounds may also serve as leads for potential autoimmune and antineoplastic therapeutics.


Subject(s)
Antineoplastic Agents , Folic Acid Antagonists , Neoplasms , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Carbon , Folic Acid Antagonists/chemistry , Folic Acid Antagonists/metabolism , Folic Acid Antagonists/pharmacology , Folic Acid Antagonists/therapeutic use , Methotrexate/pharmacology , Methotrexate/metabolism , Methotrexate/therapeutic use , Neoplasms/drug therapy , Proteolysis Targeting Chimera , Tetrahydrofolate Dehydrogenase/metabolism
2.
bioRxiv ; 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37961094

ABSTRACT

Since it was proposed as a potential host-directed antiviral agent for SARS-CoV-2, the antiparasitic drug ivermectin has been investigated thoroughly in clinical trials, which have provided insufficient support for its clinical efficacy. To examine the potential for ivermectin to be repurposed as an antiviral agent, we therefore undertook a series of preclinical studies. Consistent with early reports, ivermectin decreased SARS-CoV-2 viral burden in in vitro models at low micromolar concentrations, five- to ten-fold higher than the reported toxic clinical concentration. At similar concentrations, ivermectin also decreased cell viability and increased biomarkers of cytotoxicity and apoptosis. Further mechanistic and profiling studies revealed that ivermectin nonspecifically perturbs membrane bilayers at the same concentrations where it decreases the SARS-CoV-2 viral burden, resulting in nonspecific modulation of membrane-based targets such as G-protein coupled receptors and ion channels. These results suggest that a primary molecular mechanism for the in vitro antiviral activity of ivermectin may be nonspecific membrane perturbation, indicating that ivermectin is unlikely to be translatable into a safe and effective antiviral agent. These results and experimental workflow provide a useful paradigm for performing preclinical studies on (pandemic-related) drug repurposing candidates.

3.
Nat Commun ; 14(1): 1364, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36914634

ABSTRACT

Robust, generalizable approaches to identify compounds efficiently with undesirable mechanisms of action in complex cellular assays remain elusive. Such a process would be useful for hit triage during high-throughput screening and, ultimately, predictive toxicology during drug development. Here we generate cell painting and cellular health profiles for 218 prototypical cytotoxic and nuisance compounds in U-2 OS cells in a concentration-response format. A diversity of compounds that cause cellular damage produces bioactive cell painting morphologies, including cytoskeletal poisons, genotoxins, nonspecific electrophiles, and redox-active compounds. Further, we show that lower quality lysine acetyltransferase inhibitors and nonspecific electrophiles can be distinguished from more selective counterparts. We propose that the purposeful inclusion of cytotoxic and nuisance reference compounds such as those profiled in this resource will help with assay optimization and compound prioritization in complex cellular assays like cell painting.


Subject(s)
High-Throughput Screening Assays , Oxidation-Reduction
4.
J Mass Spectrom Adv Clin Lab ; 26: 34, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36191162

ABSTRACT

[This corrects the article DOI: 10.1016/j.clinms.2018.07.002.].

6.
SLAS Technol ; 26(6): 579-590, 2021 12.
Article in English | MEDLINE | ID: mdl-34813400

ABSTRACT

Current high-throughput screening assay optimization is often a manual and time-consuming process, even when utilizing design-of-experiment approaches. A cross-platform, Cloud-based Bayesian optimization-based algorithm was developed as part of the National Center for Advancing Translational Sciences (NCATS) ASPIRE (A Specialized Platform for Innovative Research Exploration) Initiative to accelerate preclinical drug discovery. A cell-free assay for papain enzymatic activity was used as proof of concept for biological assay development and system operationalization. Compared with a brute-force approach that sequentially tested all 294 assay conditions to find the global optimum, the Bayesian optimization algorithm could find suitable conditions for optimal assay performance by testing 21 assay conditions on average, with up to 20 conditions being tested simultaneously, as confirmed by repeated simulation. The algorithm could achieve a sevenfold reduction in costs for lab supplies and high-throughput experimentation runtime, all while being controlled from a remote site through a secure connection. Based on this proof of concept, this technology is expected to be applied to more complex biological assays and automated chemistry reaction screening at NCATS, and should be transferable to other institutions.


Subject(s)
Algorithms , High-Throughput Screening Assays , Bayes Theorem , Biological Assay , Translational Science, Biomedical
8.
SLAS Discov ; 26(10): 1280-1290, 2021 12.
Article in English | MEDLINE | ID: mdl-34218710

ABSTRACT

Compound-dependent assay interferences represent a continued burden in drug and chemical probe discovery. The open-source National Institutes of Health/National Center for Advancing Translational Sciences (NIH/NCATS) Assay Guidance Manual (AGM) established an "Assay Artifacts and Interferences" section to address different sources of artifacts and interferences in biological assays. In addition to the frequent introduction of new chapters in this important topic area, older chapters are periodically updated by experts from academia, industry, and government to include new technologies and practices. Section chapters describe many best practices for mitigating and identifying compound-dependent assay interferences. Using two previously reported biochemical high-throughput screening campaigns for small-molecule inhibitors of the epigenetic targets Rtt109 and NSD2, the authors review best practices and direct readers to high-yield resources in the AGM and elsewhere for the mitigation and identification of compound-dependent reactivity and aggregation assay interferences.


Subject(s)
Biological Assay/methods , High-Throughput Screening Assays/methods , Small Molecule Libraries/chemistry , Drug Discovery/methods , Humans , National Institutes of Health (U.S.) , Translational Science, Biomedical/methods , United States
9.
SLAS Discov ; 26(10): 1243-1255, 2021 12.
Article in English | MEDLINE | ID: mdl-34225522

ABSTRACT

A diverse range of biochemical and cellular assays are used by medicinal chemists to guide compound optimization. The data collected from these assays influence decisions taken on structure-activity relationship (SAR) campaigns. Therefore, it is paramount that medicinal chemists have a solid understanding of the strengths and limitations of each assay being used to characterize synthesized analogs. For the successful execution of a medicinal chemistry campaign, it is our contention that an early partnership among assay biologists, informaticians, and medicinal chemists must exist. Their combined skill sets are necessary to not only design and develop robust assays but also implement an effective screening cascade in which multiple orthogonal and counter assays are selected to validate the activity and target(s) of the synthesized compounds. We review multiple cases of drug and chemical probe discovery from collaborative National Center for Advancing Translational Sciences/National Institutes of Health projects and published scientific literature in which the evaluation of compounds in secondary or orthogonal assays led to the discovery of unexpected activities, forcing a reconsideration of the original assay design that was used to discover the biological activity of the compound. Using these retrospective case studies, the goal of this Perspective is to hedge toward the development of physiologically relevant assays that are able to capture the true bioactivity of compounds being developed in a medicinal chemistry campaign.


Subject(s)
Biological Assay/methods , Chemistry, Pharmaceutical/methods , Animals , Drug Discovery/methods , Humans , Structure-Activity Relationship
11.
ACS Med Chem Lett ; 12(6): 887-892, 2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34141066

ABSTRACT

Remodelin is a putative small molecule inhibitor of the RNA acetyltransferase NAT10 which has shown preclinical efficacy in models of the premature aging disease Hutchinson-Gilford Progeria Syndrome (HGPS). Here we evaluate remodelin's assay interference characteristics and effects on NAT10-catalyzed RNA cytidine acetylation. We find the remodelin chemotype constitutes a cryptic assay interference compound, which does not react with small molecule thiols but demonstrates protein reactivity in ALARM NMR and proteome-wide affinity profiling assays. Biophysical analyses find no direct evidence for interaction of remodelin with the NAT10 acetyltransferase active site. Cellular studies verify that N4-acetylcytidine (ac4C) is a nonredundant target of NAT10 activity in human cell lines and find that this RNA modification is not affected by remodelin treatment in several orthogonal assays. These studies display the potential for remodelin's chemotype to interact with multiple protein targets in cells and indicate remodelin should not be applied as a specific chemical inhibitor of NAT10-catalyzed RNA acetylation.

12.
Cell Chem Biol ; 28(3): 356-370, 2021 03 18.
Article in English | MEDLINE | ID: mdl-33592188

ABSTRACT

Compounds that exhibit assay interference or undesirable mechanisms of bioactivity ("nuisance compounds") are routinely encountered in cellular assays, including phenotypic and high-content screening assays. Much is known regarding compound-dependent assay interferences in cell-free assays. However, despite the essential role of cellular assays in chemical biology and drug discovery, there is considerably less known about nuisance compounds in more complex cell-based assays. In our view, a major obstacle to realizing the full potential of chemical biology will not just be difficult-to-drug targets or even the sheer number of targets, but rather nuisance compounds, due to their ability to waste significant resources and erode scientific trust. In this review, we summarize our collective academic, government, and industry experiences regarding cellular nuisance compounds. We describe assay design strategies to mitigate the impact of nuisance compounds and suggest best practices to efficiently address these compounds in complex biological settings.


Subject(s)
Biological Products/chemistry , Pharmaceutical Preparations/chemistry , Artificial Intelligence , Cheminformatics , Humans
13.
J Med Chem ; 63(21): 12137-12155, 2020 11 12.
Article in English | MEDLINE | ID: mdl-32804502

ABSTRACT

This Perspective of the published essential medicinal chemistry of cannabidiol (CBD) provides evidence that the popularization of CBD-fortified or CBD-labeled health products and CBD-associated health claims lacks a rigorous scientific foundation. CBD's reputation as a cure-all puts it in the same class as other "natural" panaceas, where valid ethnobotanicals are reduced to single, purportedly active ingredients. Such reductionist approaches oversimplify useful, chemically complex mixtures in an attempt to rationalize the commercial utility of natural compounds and exploit the "natural" label. Literature evidence associates CBD with certain semiubiquitous, broadly screened, primarily plant-based substances of undocumented purity that interfere with bioassays and have a low likelihood of becoming therapeutic agents. Widespread health challenges and pandemic crises such as SARS-CoV-2 create circumstances under which scientists must be particularly vigilant about healing claims that lack solid foundational data. Herein, we offer a critical review of the published medicinal chemistry properties of CBD, as well as precise definitions of CBD-containing substances and products, distilled to reveal the essential factors that impact its development as a therapeutic agent.


Subject(s)
Cannabidiol/pharmacology , Animals , Cannabidiol/pharmacokinetics , Cannabidiol/therapeutic use , Cannabidiol/toxicity , Chemistry, Pharmaceutical , Clinical Trials as Topic , Humans , Placebo Effect
14.
J Biol Chem ; 295(39): 13516-13531, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32723867

ABSTRACT

Prion disease is a rapidly progressive neurodegenerative disorder caused by misfolding and aggregation of the prion protein (PrP), and there are currently no therapeutic options. PrP ligands could theoretically antagonize prion formation by protecting the native protein from misfolding or by targeting it for degradation, but no validated small-molecule binders have been discovered to date. We deployed a variety of screening methods in an effort to discover binders of PrP, including 19F-observed and saturation transfer difference (STD) NMR spectroscopy, differential scanning fluorimetry (DSF), DNA-encoded library selection, and in silico screening. A single benzimidazole compound was confirmed in concentration-response, but affinity was very weak (Kd > 1 mm), and it could not be advanced further. The exceptionally low hit rate observed here suggests that PrP is a difficult target for small-molecule binders. Whereas orthogonal binder discovery methods could yield high-affinity compounds, non-small-molecule modalities may offer independent paths forward against prion disease.


Subject(s)
Benzimidazoles/pharmacology , Prion Diseases/drug therapy , Prion Proteins/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Benzimidazoles/chemistry , Drug Discovery , Drug Evaluation, Preclinical , Humans , Magnetic Resonance Spectroscopy , Prion Diseases/metabolism , Prion Proteins/metabolism , Small Molecule Libraries/chemistry
15.
J Med Chem ; 63(9): 4655-4684, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32118427

ABSTRACT

A high-throughput screen designed to discover new inhibitors of histone acetyltransferase KAT6A uncovered CTX-0124143 (1), a unique aryl acylsulfonohydrazide with an IC50 of 1.0 µM. Using this acylsulfonohydrazide as a template, we herein disclose the results of our extensive structure-activity relationship investigations, which resulted in the discovery of advanced compounds such as 55 and 80. These two compounds represent significant improvements on our recently reported prototypical lead WM-8014 (3) as they are not only equivalently potent as inhibitors of KAT6A but are less lipophilic and significantly more stable to microsomal degradation. Furthermore, during this process, we discovered a distinct structural subclass that contains key 2-fluorobenzenesulfonyl and phenylpyridine motifs, culminating in the discovery of WM-1119 (4). This compound is a highly potent KAT6A inhibitor (IC50 = 6.3 nM; KD = 0.002 µM), competes with Ac-CoA by binding to the Ac-CoA binding site, and has an oral bioavailability of 56% in rats.


Subject(s)
Antineoplastic Agents/pharmacology , Histone Acetyltransferases/antagonists & inhibitors , Hydrazines/pharmacology , Sulfonamides/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Biological Availability , Drug Discovery , Drug Stability , Humans , Hydrazines/chemical synthesis , Hydrazines/chemistry , Hydrazines/pharmacokinetics , Male , Mice , Microsomes, Liver/metabolism , Molecular Structure , Rats, Sprague-Dawley , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Sulfonamides/metabolism , Sulfonamides/pharmacokinetics
16.
J Med Chem ; 63(6): 2894-2914, 2020 03 26.
Article in English | MEDLINE | ID: mdl-32105470

ABSTRACT

Glutathione transferase omega-1 (GSTO1-1) is an enzyme whose function supports the activation of interleukin (IL)-1ß and IL-18 that are implicated in a variety of inflammatory disease states for which small-molecule inhibitors are sought. The potent reactivity of the active-site cysteine has resulted in reported inhibitors that act by covalent labeling. In this study, structure-activity relationship (SAR) elaboration of the reported GSTO1-1 inhibitor C1-27 was undertaken. Compounds were evaluated for inhibitory activity toward purified recombinant GSTO1-1 and for indicators of target engagement in cell-based assays. As covalent inhibitors, the kinact/KI values of selected compounds were determined, as well as in vivo pharmacokinetics analysis. Cocrystal structures of key novel compounds in complex with GSTO1-1 were also solved. This study represents the first application of a biochemical assay for GSTO1-1 to determine kinact/KI values for tested inhibitors and the most extensive set of cell-based data for a GSTO1-1 inhibitor SAR series reported to date. Our research culminated in the discovery of 25, which we propose as the preferred biochemical tool to interrogate cellular responses to GSTO1-1 inhibition.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Glutathione Transferase/antagonists & inhibitors , Sulfonamides/chemistry , Sulfonamides/pharmacology , Animals , Drug Development , Glutathione Transferase/chemistry , Glutathione Transferase/metabolism , Humans , Male , Mice , Molecular Docking Simulation , Structure-Activity Relationship , Benzenesulfonamides
17.
Clin Chem ; 66(3): 474-482, 2020 03 01.
Article in English | MEDLINE | ID: mdl-32057077

ABSTRACT

BACKGROUND: Clinical LC-MS/MS assays traditionally require that samples be run in batches with calibration curves in each batch. This approach is inefficient and presents a barrier to random access analysis. We developed an alternative approach called multipoint internal calibration (MPIC) that eliminated the need for batch-mode analysis. METHODS: The new approach used 4 variants of 13C-labeled methotrexate (0.026-10.3 µM) as an internal calibration curve within each sample. One site carried out a comprehensive validation, which included an evaluation of interferences and matrix effects, lower limit of quantification (LLOQ), and 20-day precision. Three sites evaluated assay precision and linearity. MPIC was also compared with traditional LC-MS/MS and an immunoassay. RESULTS: Recovery of spiked analyte was 93%-102%. The LLOQ was validated to be 0.017 µM. Total variability, determined in a 20-day experiment, was 11.5%CV. In a 5-day variability study performed at each site, total imprecision was 3.4 to 16.8%CV. Linearity was validated throughout the calibrator range (r2 > 0.995, slopes = 0.996-1.01). In comparing 40 samples run in each laboratory, the median interlaboratory imprecision was 6.55%CV. MPIC quantification was comparable to both traditional LC-MS/MS and immunoassay (r2 = 0.96-0.98, slopes = 1.04-1.06). Bland-Altman analysis of all comparisons showed biases rarely exceeding 20% when MTX concentrations were >0.4 µM. CONCLUSION: The MPIC method for serum methotrexate quantification was validated in a multisite proof-of-concept study and represents a big step toward random-access LC-MS/MS analysis, which could change the paradigm of mass spectrometry in the clinical laboratory.


Subject(s)
Methotrexate/blood , Tandem Mass Spectrometry/methods , Calibration , Carbon Isotopes/chemistry , Chromatography, High Pressure Liquid , Humans , Immunoassay , Isotope Labeling , Limit of Detection , Methotrexate/chemistry , Methotrexate/standards
18.
J Appl Lab Med ; 3(6): 974-992, 2019 05.
Article in English | MEDLINE | ID: mdl-31639689

ABSTRACT

BACKGROUND: Monitoring of medication compliance and drug abuse is used by clinicians to increase patient prescription drug compliance and reduce illicit drug abuse and diversion. Despite available immunoassays, chromatography-mass spectrometry-based methods are considered the gold standard for urine drug monitoring owing to higher sensitivities and specificities. Herein, we report a fast, convenient ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) assay to detect or quantify 37 clinically relevant prescription drugs, drugs of abuse, and related glucuronides and other metabolites in human urine by single diluted sample injection. METHODS: Analytes consisted of prescription and illicit opioids, benzodiazepines, and drugs of abuse, including parent compounds and glucuronidated and nonglucuronidated metabolites. Urine samples were diluted with water and supplemented with deuterated internal standards without enzymatic hydrolysis, analyte extraction, or sample purification. Analytes were separated by reversed-phase UPLC and quantified by positive-mode electrospray ionization and collision-induced dissociation MS. Assay validation followed Food and Drug Administration bioanalytical guidelines. RESULTS: Total analytical run time was 5.5 min. All analytes demonstrated acceptable inter- and intraassay accuracy, imprecision, and linearity throughout clinically relevant analytical ranges (1-2000 ng/mL, depending on analyte). All analytes demonstrated acceptable selectivity, stability, matrix effects, carryover, and performance compared to national reference laboratory or previously validated in-house methods. A total of 23 and 14 analytes were validated for quantitative and qualitative testing, respectively. CONCLUSIONS: A convenient UPLC-MS/MS assay for simultaneously monitoring 37 analytes in human urine was validated for use in pain management testing. Advantages of this multiplex assay include facile sample preparation and higher-throughput definitive detection including glucuronide metabolite quantification.


Subject(s)
Chromatography, High Pressure Liquid/methods , Drug Monitoring/methods , Glucuronides , Prescription Drugs , Tandem Mass Spectrometry/methods , Glucuronides/analysis , Glucuronides/urine , Humans , Limit of Detection , Pain Management/methods , Prescription Drugs/analysis , Prescription Drugs/pharmacokinetics , Reproducibility of Results , Time Factors , Urinalysis/methods
19.
J Med Chem ; 62(15): 7146-7159, 2019 08 08.
Article in English | MEDLINE | ID: mdl-31256587

ABSTRACT

A high-throughput screen for inhibitors of the histone acetyltransferase, KAT6A, led to identification of an aryl sulfonohydrazide derivative (CTX-0124143) that inhibited KAT6A with an IC50 of 1.0 µM. Elaboration of the structure-activity relationship and medicinal chemistry optimization led to the discovery of WM-8014 (97), a highly potent inhibitor of KAT6A (IC50 = 0.008 µM). WM-8014 competes with acetyl-CoA (Ac-CoA), and X-ray crystallographic analysis demonstrated binding to the Ac-CoA binding site. Through inhibition of KAT6A activity, WM-8014 induces cellular senescence and represents a unique pharmacological tool.


Subject(s)
Benzenesulfonates/chemistry , Drug Discovery/methods , Histone Acetyltransferases/antagonists & inhibitors , Histone Acetyltransferases/metabolism , Hydrazines/chemistry , Animals , Benzenesulfonates/pharmacology , Caco-2 Cells , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Hydrazines/pharmacology , Mice , Protein Structure, Secondary
20.
J Med Chem ; 62(5): 2485-2498, 2019 03 14.
Article in English | MEDLINE | ID: mdl-30715882

ABSTRACT

A series of 3,3'-disubstituted 5,5'-bi(1,2,4-triazine) derivatives was synthesized and screened against the erythrocytic stage of Plasmodium falciparum 3D7 line. The most potent dimer, 6k, with an IC50 (50% inhibitory concentration) of 0.008 µM, had high in vitro potency against P. falciparum lines resistant to chloroquine (W2, IC50 = 0.0047 ± 0.0011 µM) and artemisinin (MRA1240, IC50 = 0.0086 ± 0.0010 µM). Excellent ex vivo potency of 6k was shown against clinical field isolates of both P. falciparum (IC50 = 0.022-0.034 µM) and Plasmodium vivax (IC50 = 0.0093-0.031 µM) from the blood of outpatients with uncomplicated malaria. Despite 6k being cleared relatively rapidly in mice, it suppressed parasitemia in the Peters 4-day test, with a mean ED50 value (50% effective dose) of 1.47 mg kg-1 day-1 following oral administration. The disubstituted triazine dimer 6k represents a new class of orally available antimalarial compounds of considerable interest for further development.


Subject(s)
Antimalarials/pharmacology , Triazines/pharmacology , Animals , Antimalarials/chemistry , Antimalarials/pharmacokinetics , Chloroquine/pharmacology , Drug Resistance , Humans , In Vitro Techniques , Magnetic Resonance Spectroscopy/methods , Mice , Molecular Structure , Plasmodium/classification , Plasmodium/drug effects , Species Specificity , Structure-Activity Relationship , Triazines/chemistry , Triazines/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...