Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Waste Manag ; 182: 215-224, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38670005

ABSTRACT

Incidents of waste and biofuel fires are common at all stages of the waste recycling chain and have grave implications for business, employees, firefighters, society, and environment. An early detection of waste and biofuel fires in the smouldering stage could save precious lives, resources, and our environment. Existing fire detection methodologies e.g. handheld temperature sensors, IR cameras, gas sensors, and video and satellite-based monitoring techniques have inherent limitations to efficiently detect smouldering fires. An attempt was made to explore the potential of electrical resistivity tomography (ERT) as an alternate tool to address the problem. In the experiments an externally powered resistive wire was employed to initiate the smouldering fire inside the test material (wood pellets, wood shavings, wood fines). Time series of ERT that followed the initiation and development of smouldering were recorded using an automated monitoring instrument setup. The actual geometry of the experimental sample container and electrode setup was integrated in the 3D finite element method (FEM) model grid to perform inverse numerical modelling (inversion) and to develop resistivity tomographic images. The study shows a sharp increase in ratio of resistivity (R/Ro ≥ 50 %) in the test material in the region of smouldering hotspot and demonstrates the potential use of ERT technique for the detection of smouldering hotspots in silos and pile storage of organic material such as wood-based fuels, wood waste, coal, municipal solid waste (MSW), recyclables etc. More research is however required for enabling the use of this technique at the practical scale for different storage conditions.


Subject(s)
Wood , Fires , Recycling/methods , Tomography/methods , Refuse Disposal/methods , Biofuels/analysis
2.
Sci Total Environ ; 922: 170942, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38360317

ABSTRACT

Pollutions on and within the underground poses risks for groundwater contamination and is a widespread global problem. Common remediation methods based on digging and removal can be expensive and have limitations, while in-situ remediation is an attractive alternative. However, there is a need to develop tools to monitor the effectiveness both in terms of the successful injection of remediation fluids but also the effectiveness of the treatment, i.e., degree of degradation/removal of the pollutants and possible metabolites. This paper presents a methodology for monitoring the changes following an in-situ remediation treatment of a site contaminated with chlorinated solvents. The methodology consists of two different methods, where Direct Current resistivity and time-domain Induced Polarization (DCIP) was used to acquire daily data and geochemical analyses on water samples were collected approximately every three months. The geophysical results provide insights on how the injected fluids are spreading and assist in acquiring a better understanding of the geological and hydrogeological system. On the other hand, the geochemical sampling enhances our knowledge about the hydrochemistry of the system and the concentration of the pollutants. Our research highlights the challenges of monitoring in-situ bioremediation experiments in complex environments and in cases where pollutants are situated in low hydraulic conductivity formations. The joint interpretation of the data shows the importance of an interdisciplinary approach to understand complex systems.

3.
Waste Manag ; 106: 213-225, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32240938

ABSTRACT

This study investigates the potential for Electrical Resistivity Tomography (ERT) to detect buried glass 'hotspots' in a glass waste dump based on results from an open glass dump investigated initially. This detection potential is vital for excavation and later use of buried materials as secondary resources. After ERT, test pits (TPs) were excavated around suspected glass hotspots and physico-chemical characterisation of the materials was done. Hotspots were successfully identified as regions of high resistivity (>8000 Ωm) and were thus confirmed by TPs which indicated mean glass composition of 87.2% among samples (up to 99% in some). However, high discrepancies in material resistivities increased the risk for introduction of artefacts, thus increasing the degree of uncertainty with depth, whereas similarities in resistivity between granite bedrock and crystal glass presented data misinterpretation risks. Nevertheless, suitable survey design, careful field procedures and caution exercised by basing data interpretations primarily on TP excavation observations generated good results particularly for near-surface materials, which is useful since glass waste dumps are inherently shallow. Thus, ERT could be a useful technique for obtaining more homogeneous excavated glass and other materials for use as secondary resources in metal extraction and other waste recycling techniques while eliminating complicated and often costly waste sorting needs.


Subject(s)
Recycling , Waste Disposal Facilities , Electricity , Glass , Tomography
4.
Sci Total Environ ; 575: 767-778, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27697345

ABSTRACT

Globally, an enormous number of polluted areas are in need of remediation to prevent adverse effects on health and environment. In situ remediation and especially the monitoring thereof needs further development to avoid costly and hazardous shipments associated with excavation. The monitoring of in situ remediation actions needs easier and cheaper nondestructive methods for evaluation and verification of remediation degree and degradation status of the contaminants. We investigate the Direct Current resistivity and time-domain Induced Polarization tomography (DCIP) method and its use within the context of a DNAPL (Dense Non-Aqueous Phase Liquids) contaminated site in Varberg, Sweden, where an in situ remediation pilot test has been performed by stimulated reductive dechlorination by push injection. Our results show that the DCIP technique is an emerging and promising technique for mapping of underground structures and possibly biogeochemical spatial and temporal changes. The methodology could in combination with drilling, sampling and other complementary methods give an almost continuous image of the underground structures and delineation of the pollutant situation. It can be expected to have a future in monitoring approaches measuring time lapse induced polarization (IP), if more research is performed on the parameters and processes affecting the IP-signals verifying the interpretations. The IP technique can possibly be used for verification of the effectiveness of in situ remediation actions, as the current sampling methodology is inadequate.

5.
Environ Pollut ; 158(3): 795-804, 2010 Mar.
Article in English | MEDLINE | ID: mdl-19883963

ABSTRACT

Landfill leachates usually need to be treated before discharged, and using soil-plant systems for this has gained substantial interest in Sweden and in the UK. A three-year field study was conducted in central Sweden to quantify plant response, treatment efficiency and impact on groundwater quality of landfill leachate irrigation of short-rotation willow coppice (Salix). Two willow varieties were tested and four irrigation regimes in sixteen 400-m2 plots. The willow plants did not react negatively, despite very high annual loads of nitrogen (

Subject(s)
Refuse Disposal/methods , Salix/growth & development , Water Pollutants, Chemical/metabolism , Agriculture , Biodegradation, Environmental , Environmental Monitoring , Salix/metabolism , Sweden , Water Pollutants, Chemical/analysis
6.
Waste Manag Res ; 25(1): 49-60, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17346007

ABSTRACT

A resistivity and time-domain induced polarization (IP) survey was conducted at a landfill site under restoration at Härlöv in Southern Sweden. The covering of the landfill had begun some years ago, without keeping precise records of the work done, as is usual in such procedures. The survey was conducted in two steps, on two adjacent areas. First, a number of geoelectrical sections were made on a partly covered area that had been investigated earlier by auger drilling, in order to assist restoration. Then, a second area that should have received its final cover was imaged, and some defects in the cover could be detected and repaired. The resistivity and time-domain IP results were consistent with the results of the geotechnical drillings, and they enabled quasi-continuous mapping along the profiles. Three-dimensional visualization showed the overall consistency of the two-dimensional lines, and helped to generate a global view of the site. In spite of some ambiguities, cover and waste could be distinguished in most cases. In particular, fine-grained cover materials could be clearly distinguished from other cover materials.


Subject(s)
Environmental Restoration and Remediation , Refuse Disposal , Soil/analysis , Sweden , Waste Products/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...