Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38328202

ABSTRACT

Glioblastoma (GBM) is the most common primary tumor of the central nervous system. One major challenge in GBM treatment is the resistance to chemotherapy and radiotherapy observed in subpopulations of cancer cells, including GBM stem-like cells (GSCs). These cells hold the ability to self-renew or differentiate following treatment, participating in tumor recurrence. The gap junction protein connexin43 (Cx43) has complex roles in oncogenesis and we have previously demonstrated an association between Cx43 and GBM chemotherapy resistance. Here, we report, for the first time, increased direct interaction between non-junctional Cx43 with microtubules in the cytoplasm of GSCs. We hypothesize that non-junctional Cx43/microtubule complexing is critical for GSC maintenance and survival and sought to specifically disrupt this interaction while maintaining other Cx43 functions, such as gap junction formation. Using a Cx43 mimetic peptide of the carboxyl terminal tubulin-binding domain of Cx43 (JM2), we successfully ablated Cx43 interaction with microtubules in GSCs. Importantly, administration of JM2 significantly decreased GSC survival in vitro , and limited GSC-derived tumor growth in vivo . Together, these results identify JM2 as a novel peptide drug to ablate GSCs in GBM treatment.

2.
Development ; 149(17)2022 09 01.
Article in English | MEDLINE | ID: mdl-35950911

ABSTRACT

Coordinated migration of the mesoderm is essential for accurate organization of the body plan during embryogenesis. However, little is known about how mesoderm migration influences posterior neural tube closure in mammals. Here, we show that spinal neural tube closure and lateral migration of the caudal paraxial mesoderm depend on transmembrane protein 132A (TMEM132A), a single-pass type I transmembrane protein, the function of which is not fully understood. Our study in Tmem132a-null mice and cell models demonstrates that TMEM132A regulates several integrins and downstream integrin pathway activation as well as cell migration behaviors. Our data also implicates mesoderm migration in elevation of the caudal neural folds and successful closure of the caudal neural tube. These results suggest a requirement for paraxial mesodermal cell migration during spinal neural tube closure, disruption of which may lead to spina bifida.


Subject(s)
Membrane Proteins , Neural Tube Defects , Neural Tube , Animals , Integrins/metabolism , Membrane Proteins/genetics , Mesoderm/metabolism , Mice , Mice, Knockout , Neural Tube/metabolism , Neural Tube Defects/genetics , Neural Tube Defects/metabolism
3.
Development ; 148(17)2021 09 01.
Article in English | MEDLINE | ID: mdl-34383890

ABSTRACT

Neural crest cells (NCCs) within the mandibular and maxillary prominences of the first pharyngeal arch are initially competent to respond to signals from either region. However, mechanisms that are only partially understood establish developmental tissue boundaries to ensure spatially correct patterning. In the 'hinge and caps' model of facial development, signals from both ventral prominences (the caps) pattern the adjacent tissues whereas the intervening region, referred to as the maxillomandibular junction (the hinge), maintains separation of the mandibular and maxillary domains. One cap signal is GATA3, a member of the GATA family of zinc-finger transcription factors with a distinct expression pattern in the ventral-most part of the mandibular and maxillary portions of the first arch. Here, we show that disruption of Gata3 in mouse embryos leads to craniofacial microsomia and syngnathia (bony fusion of the upper and lower jaws) that results from changes in BMP4 and FGF8 gene regulatory networks within NCCs near the maxillomandibular junction. GATA3 is thus a crucial component in establishing the network of factors that functionally separate the upper and lower jaws during development.


Subject(s)
Body Patterning , Face/embryology , GATA3 Transcription Factor/metabolism , Animals , Branchial Region/cytology , Branchial Region/embryology , Branchial Region/metabolism , Cell Death , Cell Proliferation , Craniofacial Abnormalities/embryology , Craniofacial Abnormalities/genetics , Craniofacial Abnormalities/metabolism , Embryo, Mammalian , GATA3 Transcription Factor/genetics , Gene Expression Regulation, Developmental , Mandible/cytology , Mandible/embryology , Maxilla/cytology , Maxilla/embryology , Mice , Morphogenesis , Neural Crest/cytology , Neural Crest/embryology , Neural Crest/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...