Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 143(22): 8278-8294, 2021 Jun 09.
Article in English | MEDLINE | ID: mdl-33999619

ABSTRACT

Nanocrystalline anatase TiO2 is a robust model anode for Li insertion in batteries. The influence of nanocrystal size on the equilibrium potential and kinetics of Li insertion is investigated with in operando spectroelectrochemistry of thin film electrodes. Distinct visible and infrared responses correlate with Li insertion and electron accumulation, respectively, and these optical signals are used to deconvolute bulk Li insertion from other electrochemical responses, such as double-layer capacitance, pseudocapacitance, and electrolyte leakage. Electrochemical titration and phase-field simulations reveal that a difference in surface energies between anatase and lithiated phases of TiO2 systematically tunes the Li-insertion potentials with the particle size. However, the particle size does not affect the kinetics of Li insertion in ensemble electrodes. Rather, the Li-insertion rates depend on the applied overpotential, electrolyte concentration, and initial state of charge. We conclude that Li diffusivity and phase propagation are not rate limiting during Li insertion in TiO2 nanocrystals. Both of these processes occur rapidly once the transformation between the low-Li anatase and high-Li orthorhombic phases begins in a particle. Instead, discontinuous kinetics of Li accumulation in TiO2 particles prior to the phase transformations limits (dis)charging rates. We demonstrate a practical means to deconvolute the nonequilibrium charging behavior in nanocrystalline electrodes through a combination of colloidal synthesis, phase field simulations, and spectroelectrochemistry.

3.
ACS Nano ; 14(9): 11294-11308, 2020 09 22.
Article in English | MEDLINE | ID: mdl-32830961

ABSTRACT

Controlling the structure of layered hybrid metal halide perovskites, such as the Ruddlesden-Popper (R-P) phases, is challenging because of their tendency to form mixtures of varying composition. Colloidal growth techniques, such as antisolvent precipitation, form dispersions with properties that match bulk layered R-P phases, but controlling the composition of these particles remains challenging. Here, we explore the microstructure of particles of R-P phases of methylammonium lead iodide prepared by antisolvent precipitation from ternary mixtures of alkylammonium cations, where one cation can form perovskite phases (CH3NH3+) and the other two promote layered structures as spacers (e.g., C4H9NH3+ and C12H25NH3+). We determine that alkylammonium spacers pack with constant methylene density in the R-P interlayer and exclude interlayer solvent in dispersed colloids, regardless of length or branching. Using this result, we illustrate how the competition between cations that act as spacers between layers, or as grain-terminating ligands, determines the colloidal microstructure of layered R-P crystallites in solution. Optical measurements reveal that quantum well dimensions can be tuned by engineering the ternary cation composition. Transmission synchrotron wide-angle X-ray scattering and small-angle neutron scattering reveal changes in the structure of colloids in solvent and after deposition into thin films. In particular, we find that spacers can alloy between R-P layers if they share common steric arrangements, but tend to segregate into polydisperse R-P phases if they do not mix. This study provides a framework to compare the microstructure of colloidal layered perovskites and suggests clear avenues to control phase and colloidal morphology.

4.
ACS Nano ; 14(7): 8958-8968, 2020 07 28.
Article in English | MEDLINE | ID: mdl-32667192

ABSTRACT

Recently, unconventional bright magnetic dipole (MD) radiation was observed from two-dimensional (2D) hybrid organic-inorganic perovskites (HOIPs). According to commonly accepted HOIP band structure calculations, such MD light emission from the ground-state exciton should be strictly symmetry forbidden. These results suggest that MD emission arises in conjunction with an as-yet unidentified symmetry-breaking mechanism. In this paper, we show that MD light emission originates from a self-trapped p-like exciton stabilized at energies below the primary electric dipole (ED)-emitting 1s exciton. Using suitable combinations of sample and collection geometries, we isolate the distinct temperature-dependent properties of the ED and MD photoluminescence (PL). We show that the ED emission wavelength is nearly constant with temperature, whereas the MD emission wavelength exhibits substantial red shifts with heating. To explain these results, we derive a microscopic model comprising two distinct parity exciton states coupled to lattice distortions. The model explains many experimental observations, including the thermal red shift, the difference in emission wavelengths, and the relative intensities of the ED and MD emission. Thermodynamic analysis of temperature-dependent PL reveals that the MD emission originates from a locally distorted structure. Finally, we demonstrate unusual hysteresis effects of the MD-emitting state near structural phase transitions. We hypothesize that this is another manifestation of the local distortions, indicating that they are insensitive to phase changes in the equilibrium lattice structure.

5.
Sci Adv ; 6(6): eaay4900, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32083181

ABSTRACT

Light-matter interactions in semiconductors are uniformly treated within the electric dipole approximation; multipolar interactions are considered "forbidden." We experimentally demonstrate that this approximation inadequately describes light emission in two-dimensional (2D) hybrid organic-inorganic perovskites (HOIPs), solution processable semiconductors with promising optoelectronic properties. By exploiting the highly oriented crystal structure, we use energy-momentum spectroscopies to demonstrate that an exciton-like sideband in 2D HOIPs exhibits a multipolar radiation pattern with highly directed emission. Electromagnetic and quantum-mechanical analyses indicate that this emission originates from an out-of-plane magnetic dipole transition arising from the 2D character of electronic states. Symmetry arguments and temperature-dependent measurements suggest a dynamic symmetry-breaking mechanism that is active over a broad temperature range. These results challenge the paradigm of electric dipole-dominated light-matter interactions in optoelectronic materials, provide new perspectives on the origins of unexpected sideband emission in HOIPs, and tease the possibility of metamaterial-like scattering phenomena at the quantum-mechanical level.

6.
Nano Lett ; 20(3): 2072-2079, 2020 Mar 11.
Article in English | MEDLINE | ID: mdl-32081013

ABSTRACT

Coloration efficiency is an important figure of merit in electrochromic windows. Though it is thought to be an intrinsic material property, we tune optical modulation by effective utilization of ion intercalation sites. Specifically, we enhance the coloration efficiency of m-WO2.72 nanocrystal films by selectively intercalating sodium ions into optically active hexagonal sites. To accurately measure coloration efficiencies, significant degradation during cycling is mitigated by introducing atomic-layer-deposited Al2O3 layers. Galvanostatic spectroscopic measurement shows that the site-selective intercalation of sodium ions in hexagonal tunnels enhances the coloration efficiency compared to a nonselective lithium ion-based electrolyte. Electrochemical rate analysis shows insertion of sodium ions to be capacitive-like, another indication of occupying hexagonal sites. Our results emphasize the importance of different site occupation on spectroelectrochemical properties, which can be used for designing materials and selecting electrolytes for enhanced electrochromic performance. In this context, we suggest sodium ion-based electrolytes hold unrealized potential for tungsten oxide electrochromic applications.

7.
ACS Nano ; 13(9): 10745-10753, 2019 09 24.
Article in English | MEDLINE | ID: mdl-31491078

ABSTRACT

Hybrid organic/inorganic perovskites (HOIPs) are of great interest for optoelectronic applications due to their quality electronic and optical properties and the exceptional ease of room-temperature synthesis. Layered HOIP structures, e.g., Ruddlesden-Popper phases, offer additional synthetic means to define self-assembling multiple quantum well structures. Measurements of Ruddlesden-Popper HOIP optical constants are currently lacking, but are critical for both a fundamental understanding as well as optoelectronic device design. Here, we use momentum-resolved optical techniques to measure error-constrained complex uniaxial optical constants of layered lead-iodide perovskites incorporating a variety of organic spacer molecules. We demonstrate how large optical anisotropies measured in these materials arise primarily from classical dielectric inhomogeneities rather than the two-dimensional nature of the electronic states. We subsequently show how variations among these materials can be understood within a classical effective-medium model that accounts for dielectric inhomogeneity. We find agreement between experimentally inferred dielectric properties and quantum-mechanical calculations only after accounting for these purely classical effects. This work provides a library of optical constants for this class of materials and clarifies the origins of large absorption and photoluminescence anisotropies witnessed in these and other layered nanomaterials.

8.
Nat Mater ; 18(9): 1024, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31366930

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

9.
ACS Appl Mater Interfaces ; 11(28): 25313-25321, 2019 07 17.
Article in English | MEDLINE | ID: mdl-31268293

ABSTRACT

Mixed halide hybrid organic-inorganic perovskites have band gaps that span the visible spectrum making them candidates for optoelectronic devices. Transport of the halide atoms in methyl ammonium lead iodide (MAPbI3) and its alloys with bromine has been observed in both dark and under illumination. While halide transport upon application of electric fields has received much attention, less is known regarding bromide and iodide interdiffusion down concentration gradients. This work provides an upper bound on the bromide-iodide interdiffusion coefficient Di in thin films of MAPb(BrxI1-x)3 using a diffusion couples of lateral heterostructures. The upper bound of Di was extracted from changes in the interface profiles of the heterostructures upon exposure to heat. The stability of thoroughly heated interfacial profiles suggests that the miscibility gap extends to higher temperatures and to a higher fractional composition of bromine than predicted by theory. The results of this work provide guidance for compositions of thermally stable heterostructures of hybrid halide perovskites.

10.
Nat Mater ; 17(8): 710-717, 2018 08.
Article in English | MEDLINE | ID: mdl-29988146

ABSTRACT

Degenerately doped semiconductor nanocrystals (NCs) exhibit a localized surface plasmon resonance (LSPR) in the infrared range of the electromagnetic spectrum. Unlike metals, semiconductor NCs offer tunable LSPR characteristics enabled by doping, or via electrochemical or photochemical charging. Tuning plasmonic properties through carrier density modulation suggests potential applications in smart optoelectronics, catalysis and sensing. Here, we elucidate fundamental aspects of LSPR modulation through dynamic carrier density tuning in Sn-doped In2O3 (Sn:In2O3) NCs. Monodisperse Sn:In2O3 NCs with various doping levels and sizes were synthesized and assembled in uniform films. NC films were then charged in an in situ electrochemical cell and the LSPR modulation spectra were monitored. Based on spectral shifts and intensity modulation of the LSPR, combined with optical modelling, it was found that often-neglected semiconductor properties, specifically band structure modification due to doping and surface states, strongly affect LSPR modulation. Fermi level pinning by surface defect states creates a surface depletion layer that alters the LSPR properties; it determines the extent of LSPR frequency modulation, diminishes the expected near-field enhancement, and strongly reduces sensitivity of the LSPR to the surroundings.

11.
Nano Lett ; 16(10): 6021-6027, 2016 10 12.
Article in English | MEDLINE | ID: mdl-27689911

ABSTRACT

Vanadium dioxide (VO2) undergoes significant optical, electronic, and structural changes as it transforms between the low-temperature monoclinic and high-temperature rutile phases. Recently, alternative stimuli have been utilized to trigger insulator-to-metal transformations in VO2, including electrochemical gating. Here, we prepare and electrochemically reduce mesoporous films of VO2 nanocrystals, prepared from colloidally synthesized V2O3 nanocrystals that have been oxidatively annealed, in a three-electrode electrochemical cell. We observe a reversible transition between infrared transparent insulating phases and a darkened metallic phase by in situ visible-near-infrared spectroelectrochemistry and correlate these observations with structural and electronic changes monitored by X-ray absorption spectroscopy, X-ray diffraction, Raman spectroscopy, and conductivity measurements. An unexpected reversible transition from conductive, reduced monoclinic VO2 to an infrared-transparent insulating phase upon progressive electrochemical reduction is observed. This insulator-metal-insulator transition has not been reported in previous studies of electrochemically gated epitaxial VO2 films and is attributed to improved oxygen vacancy formation kinetics and diffusion due to the mesoporous nanocrystal film structure.

12.
Nano Lett ; 16(5): 3390-8, 2016 05 11.
Article in English | MEDLINE | ID: mdl-27111427

ABSTRACT

Defects may tend to make crystals interesting but they do not always improve performance. In doped metal oxide nanocrystals with localized surface plasmon resonance (LSPR), aliovalent dopants and oxygen vacancies act as centers for ionized impurity scattering of electrons. Such electronic damping leads to lossy, broadband LSPR with low quality factors, limiting applications that require near-field concentration of light. However, the appropriate dopant can mitigate ionized impurity scattering. Herein, we report the synthesis and characterization of a novel doped metal oxide nanocrystal material, cerium-doped indium oxide (Ce:In2O3). Ce:In2O3 nanocrystals display tunable mid-infrared LSPR with exceptionally narrow line widths and the highest quality factors observed for nanocrystals in this spectral region. Drude model fits to the spectra indicate that a drastic reduction in ionized impurity scattering is responsible for the enhanced quality factors, and high electronic mobilities reaching 33 cm(2)V(-1) s(-1) are measured optically, well above the optical mobility for tin-doped indium oxide (ITO) nanocrystals. We investigate the microscopic mechanisms underlying this enhanced mobility with density functional theory calculations, which suggest that scattering is reduced because cerium orbitals do not hybridize with the In orbitals that dominate the bottom of the conduction band. Ce doping may also reduce the equilibrium oxygen vacancy concentration, further enhancing mobility. From the absorption spectra of single Ce:In2O3 nanocrystals, we determine the dielectric function and by simulation predict strong near-field enhancement of mid-IR light, especially around the vertices of our synthesized nanocubes.

13.
J Am Chem Soc ; 137(28): 9160-6, 2015 Jul 22.
Article in English | MEDLINE | ID: mdl-26154107

ABSTRACT

Solution-processed films of colloidal aliovalent niobium-doped anatase TiO2 nanocrystals exhibit modulation of optical transmittance in two spectral regions-near-infrared (NIR) and visible light-as they undergo progressive and reversible charging in an electrochemical cell. The Nb-TiO2 nanocrystal film supports a localized surface plasmon resonance in the NIR, which can be dynamically modulated via capacitive charging. When the nanocrystals are charged by insertion of lithium ions, inducing a well-known structural phase transition of the anatase lattice, strong modulation of visible transmittance is observed. Based on X-ray absorption near-edge spectroscopy, the conduction electrons localize only upon lithium ion insertion, thus rationalizing the two modes of optical switching observed in a single material. These multimodal electrochromic properties show promise for application in dynamic optical filters or smart windows.

14.
J Am Chem Soc ; 134(45): 18732-8, 2012 Nov 14.
Article in English | MEDLINE | ID: mdl-23034055

ABSTRACT

The kinetics and intricate interactions governing the growth of 3D single nanoparticle (NP) superlattices (SLs, SNSLs) and binary NP SLs (BNSLs) in solution are understood by combining controlled solvent evaporation and in situ, real-time small-angle X-ray scattering (SAXS). For the iron oxide (magnetite) NP SLs studied here, the larger the NP, the farther apart are the NPs when the SNSLs begin to precipitate and the closer they are after ordering. This is explained by a model of NP assembly using van der Waals interactions between magnetite cores in hydrocarbons with a ∼21 zJ Hamaker constant. When forming BNSLs of two different sized NPs, the NPs that are in excess of that needed to achieve the final BNSL stoichiometry are expelled during the BNSL formation, and these expelled NPs can form SNSLs. The long-range ordering of these SNSLs and the BNSLs can occur faster than the NP expulsion.


Subject(s)
Ferrosoferric Oxide/chemistry , Nanoparticles/chemistry , Oleic Acid/chemistry , Colloids/chemistry , Particle Size , Scattering, Small Angle , Surface Properties , Time Factors , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...