Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Sci Transl Med ; 16(748): eadj3385, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38776390

ABSTRACT

Variation in DNA methylation (DNAmet) in white blood cells and other cells/tissues has been implicated in the etiology of progressive diabetic kidney disease (DKD). However, the specific mechanisms linking DNAmet variation in blood cells with risk of kidney failure (KF) and utility of measuring blood cell DNAmet in personalized medicine are not clear. We measured blood cell DNAmet in 277 individuals with type 1 diabetes and DKD using Illumina EPIC arrays; 51% of the cohort developed KF during 7 to 20 years of follow-up. Our epigenome-wide analysis identified DNAmet at 17 CpGs (5'-cytosine-phosphate-guanine-3' loci) associated with risk of KF independent of major clinical risk factors. DNAmet at these KF-associated CpGs remained stable over a median period of 4.7 years. Furthermore, DNAmet variations at seven KF-associated CpGs were strongly associated with multiple genetic variants at seven genomic regions, suggesting a strong genetic influence on DNAmet. The effects of DNAmet variations at the KF-associated CpGs on risk of KF were partially mediated by multiple KF-associated circulating proteins and KF-associated circulating miRNAs. A prediction model for risk of KF was developed by adding blood cell DNAmet at eight selected KF-associated CpGs to the clinical model. This updated model significantly improved prediction performance (c-statistic = 0.93) versus the clinical model (c-statistic = 0.85) at P = 6.62 × 10-14. In conclusion, our multiomics study provides insights into mechanisms through which variation of DNAmet may affect KF development and shows that blood cell DNAmet at certain CpGs can improve risk prediction for KF in T1D.


Subject(s)
DNA Methylation , Diabetes Mellitus, Type 1 , Genetic Variation , Humans , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/complications , DNA Methylation/genetics , Male , Female , Renal Insufficiency/genetics , Renal Insufficiency/blood , MicroRNAs/genetics , MicroRNAs/blood , Adult , CpG Islands/genetics , Diabetic Nephropathies/genetics , Diabetic Nephropathies/blood , Risk Factors
2.
Front Endocrinol (Lausanne) ; 14: 1163001, 2023.
Article in English | MEDLINE | ID: mdl-37324271

ABSTRACT

Diabetic kidney disease (DKD) is a severe diabetic complication that affects up to half of the individuals with diabetes. Elevated blood glucose levels are a key underlying cause of DKD, but DKD is a complex multifactorial disease, which takes years to develop. Family studies have shown that inherited factors also contribute to the risk of the disease. During the last decade, genome-wide association studies (GWASs) have emerged as a powerful tool to identify genetic risk factors for DKD. In recent years, the GWASs have acquired larger number of participants, leading to increased statistical power to detect more genetic risk factors. In addition, whole-exome and whole-genome sequencing studies are emerging, aiming to identify rare genetic risk factors for DKD, as well as epigenome-wide association studies, investigating DNA methylation in relation to DKD. This article aims to review the identified genetic and epigenetic risk factors for DKD.


Subject(s)
Diabetes Complications , Diabetes Mellitus , Diabetic Nephropathies , Humans , Diabetic Nephropathies/genetics , Genome-Wide Association Study , Diabetes Complications/genetics , Risk Factors , Epigenesis, Genetic , Diabetes Mellitus/genetics
3.
Nat Commun ; 13(1): 7891, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36550108

ABSTRACT

Type 1 diabetes affects over nine million individuals globally, with approximately 40% developing diabetic kidney disease. Emerging evidence suggests that epigenetic alterations, such as DNA methylation, are involved in diabetic kidney disease. Here we assess differences in blood-derived genome-wide DNA methylation associated with diabetic kidney disease in 1304 carefully characterised individuals with type 1 diabetes and known renal status from two cohorts in the United Kingdom-Republic of Ireland and Finland. In the meta-analysis, we identify 32 differentially methylated CpGs in diabetic kidney disease in type 1 diabetes, 18 of which are located within genes differentially expressed in kidneys or correlated with pathological traits in diabetic kidney disease. We show that methylation at 21 of the 32 CpGs predict the development of kidney failure, extending the knowledge and potentially identifying individuals at greater risk for diabetic kidney disease in type 1 diabetes.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetic Nephropathies , Humans , DNA Methylation/genetics , Epigenome , Diabetic Nephropathies/genetics , Epigenesis, Genetic , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/genetics , Biomarkers , DNA , Genome-Wide Association Study , CpG Islands
4.
Diabetes ; 71(12): 2728-2738, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36409784

ABSTRACT

The exon copy number variant in the haptoglobin gene is associated with cardiovascular and kidney disease. For stroke, previous research is inconclusive. We aimed to study the relationship between the haptoglobin Hp1/2 genotype and stroke in individuals with type 1 diabetes from the Finnish Diabetic Nephropathy Study. We included two partially overlapping cohorts: one with haptoglobin genotypes determined using genotyping for 179 individuals with stroke and 517 matched control subjects, and the other using haptoglobin genotype imputation for a larger cohort of 500 individuals with stroke and 3,806 individuals without stroke. We observed no difference in the Hp1-1, Hp2-1, and Hp2-2 genotype frequencies between individuals with or without stroke, neither in the genotyping nor the imputation cohorts. Haptoglobin genotypes were also not associated with the ischemic or hemorrhagic stroke subtypes. In our imputed haptoglobin cohort, 61% of individuals with stroke died during follow-up. However, the risk of death was not related to the haptoglobin genotype. Diabetic kidney disease and cardiovascular events were common in the cohort, but the haptoglobin genotypes were not associated with stroke when stratified by these complications. To conclude, the Hp1/2 genotypes did not affect the risk of stroke or survival after stroke in our cohort with type 1 diabetes.


Subject(s)
Diabetes Mellitus, Type 1 , Stroke , Humans , Haptoglobins/genetics , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/genetics , Genotype , Stroke/epidemiology , Stroke/genetics , Chromosomal Proteins, Non-Histone/genetics
5.
Genome Med ; 14(1): 132, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36419110

ABSTRACT

BACKGROUND: Dyslipidemia is a major risk factor for cardiovascular disease, and diabetes impacts the lipid metabolism through multiple pathways. In addition to the standard lipid measurements, apolipoprotein concentrations provide added awareness of the burden of circulating lipoproteins. While common genetic variants modestly affect the serum lipid concentrations, rare genetic mutations can cause monogenic forms of hypercholesterolemia and other genetic disorders of lipid metabolism. We aimed to identify low-frequency protein-altering variants (PAVs) affecting lipoprotein and lipid traits. METHODS: We analyzed whole-exome (WES) and whole-genome sequencing (WGS) data of 481 and 474 individuals with type 1 diabetes, respectively. The phenotypic data consisted of 79 serum lipid and apolipoprotein phenotypes obtained with clinical laboratory measurements and nuclear magnetic resonance spectroscopy. RESULTS: The single-variant analysis identified an association between the LIPC p.Thr405Met (rs113298164) and serum apolipoprotein A1 concentrations (p=7.8×10-8). The burden of PAVs was significantly associated with lipid phenotypes in LIPC, RBM47, TRMT5, GTF3C5, MARCHF10, and RYR3 (p<2.9×10-6). The RBM47 gene is required for apolipoprotein B post-translational modifications, and in our data, the association between RBM47 and apolipoprotein C-III concentrations was due to a rare 21 base pair p.Ala496-Ala502 deletion; in replication, the burden of rare deleterious variants in RBM47 was associated with lower triglyceride concentrations in WES of >170,000 individuals from multiple ancestries (p=0.0013). Two PAVs in GTF3C5 were highly enriched in the Finnish population and associated with cardiovascular phenotypes in the general population. In the previously known APOB gene, we identified novel associations at two protein-truncating variants resulting in lower serum non-HDL cholesterol (p=4.8×10-4), apolipoprotein B (p=5.6×10-4), and LDL cholesterol (p=9.5×10-4) concentrations. CONCLUSIONS: We identified lipid and apolipoprotein-associated variants in the previously known LIPC and APOB genes, as well as PAVs in GTF3C5 associated with LDLC, and in RBM47 associated with apolipoprotein C-III concentrations, implicated as an independent CVD risk factor. Identification of rare loss-of-function variants has previously revealed genes that can be targeted to prevent CVD, such as the LDL cholesterol-lowering loss-of-function variants in the PCSK9 gene. Thus, this study suggests novel putative therapeutic targets for the prevention of CVD.


Subject(s)
Cardiovascular Diseases , Proprotein Convertase 9 , Humans , Proprotein Convertase 9/genetics , Exome Sequencing , Cholesterol, LDL/genetics , Apolipoprotein C-III/genetics , Apolipoproteins/genetics , Apolipoproteins B/genetics , RNA-Binding Proteins/genetics
6.
Diabetologia ; 65(9): 1495-1509, 2022 09.
Article in English | MEDLINE | ID: mdl-35763030

ABSTRACT

AIMS/HYPOTHESIS: Diabetic kidney disease (DKD) is the leading cause of kidney failure and has a substantial genetic component. Our aim was to identify novel genetic factors and genes contributing to DKD by performing meta-analysis of previous genome-wide association studies (GWAS) on DKD and by integrating the results with renal transcriptomics datasets. METHODS: We performed GWAS meta-analyses using ten phenotypic definitions of DKD, including nearly 27,000 individuals with diabetes. Meta-analysis results were integrated with estimated quantitative trait locus data from human glomerular (N=119) and tubular (N=121) samples to perform transcriptome-wide association study. We also performed gene aggregate tests to jointly test all available common genetic markers within a gene, and combined the results with various kidney omics datasets. RESULTS: The meta-analysis identified a novel intronic variant (rs72831309) in the TENM2 gene associated with a lower risk of the combined chronic kidney disease (eGFR<60 ml/min per 1.73 m2) and DKD (microalbuminuria or worse) phenotype (p=9.8×10-9; although not withstanding correction for multiple testing, p>9.3×10-9). Gene-level analysis identified ten genes associated with DKD (COL20A1, DCLK1, EIF4E, PTPRN-RESP18, GPR158, INIP-SNX30, LSM14A and MFF; p<2.7×10-6). Integration of GWAS with human glomerular and tubular expression data demonstrated higher tubular AKIRIN2 gene expression in individuals with vs without DKD (p=1.1×10-6). The lead SNPs within six loci significantly altered DNA methylation of a nearby CpG site in kidneys (p<1.5×10-11). Expression of lead genes in kidney tubules or glomeruli correlated with relevant pathological phenotypes (e.g. TENM2 expression correlated positively with eGFR [p=1.6×10-8] and negatively with tubulointerstitial fibrosis [p=2.0×10-9], tubular DCLK1 expression correlated positively with fibrosis [p=7.4×10-16], and SNX30 expression correlated positively with eGFR [p=5.8×10-14] and negatively with fibrosis [p<2.0×10-16]). CONCLUSIONS/INTERPRETATION: Altogether, the results point to novel genes contributing to the pathogenesis of DKD. DATA AVAILABILITY: The GWAS meta-analysis results can be accessed via the type 1 and type 2 diabetes (T1D and T2D, respectively) and Common Metabolic Diseases (CMD) Knowledge Portals, and downloaded on their respective download pages ( https://t1d.hugeamp.org/downloads.html ; https://t2d.hugeamp.org/downloads.html ; https://hugeamp.org/downloads.html ).


Subject(s)
Diabetes Mellitus, Type 2 , Diabetic Nephropathies , Diabetes Mellitus, Type 2/complications , Diabetic Nephropathies/metabolism , Doublecortin-Like Kinases , Fibrosis , Genome-Wide Association Study , Humans , Intracellular Signaling Peptides and Proteins/genetics , Kidney/metabolism , Polymorphism, Single Nucleotide/genetics , Protein Serine-Threonine Kinases/genetics
8.
J Intern Med ; 291(3): 338-349, 2022 03.
Article in English | MEDLINE | ID: mdl-34817888

ABSTRACT

OBJECTIVES: We studied apolipoprotein C-III (apoC-III) in relation to diabetic kidney disease (DKD), cardiovascular outcomes, and mortality in type 1 diabetes. METHODS: The cohort comprised 3966 participants from the prospective observational Finnish Diabetic Nephropathy Study. Progression of DKD was determined from medical records. A major adverse cardiac event (MACE) was defined as acute myocardial infarction, coronary revascularization, stroke, or cardiovascular mortality through 2017. Cardiovascular and mortality data were retrieved from national registries. RESULTS: ApoC-III predicted DKD progression independent of sex, diabetes duration, blood pressure, HbA1c , smoking, LDL-cholesterol, lipid-lowering medication, DKD category, and remnant cholesterol (hazard ratio [HR] 1.43 [95% confidence interval 1.05-1.94], p = 0.02). ApoC-III also predicted the MACE in a multivariable regression analysis; however, it was not independent of remnant cholesterol (HR 1.05 [0.81-1.36, p = 0.71] with remnant cholesterol; 1.30 [1.03-1.64, p = 0.03] without). DKD-specific analyses revealed that the association was driven by individuals with albuminuria, as no link between apoC-III and the outcome was observed in the normal albumin excretion or kidney failure categories. The same was observed for mortality: Individuals with albuminuria had an adjusted HR of 1.49 (1.03-2.16, p = 0.03) for premature death, while no association was found in the other groups. The highest apoC-III quartile displayed a markedly higher risk of MACE and death than the lower quartiles; however, this nonlinear relationship flattened after adjustment. CONCLUSIONS: The impact of apoC-III on MACE risk and mortality is restricted to those with albuminuria among individuals with type 1 diabetes. This study also revealed that apoC-III predicts DKD progression, independent of the initial DKD category.


Subject(s)
Apolipoprotein C-III , Cardiovascular Diseases , Diabetes Mellitus, Type 1 , Diabetic Nephropathies , Albuminuria , Diabetes Mellitus, Type 1/complications , Finland , Humans
9.
Circ Genom Precis Med ; 14(5): e002862, 2021 10.
Article in English | MEDLINE | ID: mdl-34601942

ABSTRACT

BACKGROUND: Peripheral artery disease (PAD) affects >200 million people worldwide and is associated with high mortality and morbidity. We sought to identify genomic variants associated with PAD overall and in the contexts of diabetes and smoking status. METHODS: We identified genetic variants associated with PAD and then meta-analyzed with published summary statistics from the Million Veterans Program and UK Biobank to replicate their findings. Next, we ran stratified genome-wide association analysis in ever smokers, never smokers, individuals with diabetes, and individuals with no history of diabetes and corresponding interaction analyses, to identify variants that modify the risk of PAD by diabetic or smoking status. RESULTS: We identified 5 genome-wide significant (Passociation ≤5×10-8) associations with PAD in 449 548 (Ncases=12 086) individuals of European ancestry near LPA (lipoprotein [a]), CDKN2BAS1 (CDKN2B antisense RNA 1), SH2B3 (SH2B adaptor protein 3) - PTPN11 (protein tyrosine phosphatase non-receptor type 11), HDAC9 (histone deacetylase 9), and CHRNA3 (cholinergic receptor nicotinic alpha 3 subunit) loci (which overlapped previously reported associations). Meta-analysis with variants previously associated with PAD showed that 18 of 19 published variants remained genome-wide significant. In individuals with diabetes, rs116405693 at the CCSER1 (coiled-coil serine rich protein 1) locus was associated with PAD (odds ratio [95% CI], 1.51 [1.32-1.74], Pdiabetes=2.5×10-9, Pinteractionwithdiabetes=5.3×10-7). Furthermore, in smokers, rs12910984 at the CHRNA3 locus was associated with PAD (odds ratio [95% CI], 1.15 [1.11-1.19], Psmokers=9.3×10-10, Pinteractionwithsmoking=3.9×10-5). CONCLUSIONS: Our analyses confirm the published genetic associations with PAD and identify novel variants that may influence susceptibility to PAD in the context of diabetes or smoking status.


Subject(s)
Genetic Predisposition to Disease , Peripheral Arterial Disease/genetics , Polymorphism, Single Nucleotide , Female , Genome-Wide Association Study , Humans , Male , Peripheral Arterial Disease/epidemiology
10.
Diabetes ; 70(10): 2391-2401, 2021 10.
Article in English | MEDLINE | ID: mdl-34244239

ABSTRACT

Fatty acid binding protein 4 (FABP4) is implicated in the pathogenesis of cardiometabolic disorders. Pharmacological inhibition or genetic deletion of FABP4 improves cardiometabolic health and protects against atherosclerosis in preclinical models. As cardiovascular disease (CVD) is common in type 1 diabetes, we examined the role of FABP4 in the development of complications in type 1 diabetes, focusing on a functional, low-expression variant (rs77878271) in the promoter of the FABP4 gene. For this, we assessed the risk of CVD, stroke, coronary artery disease (CAD), end-stage kidney disease, and mortality using Cox proportional hazards models for the FABP4 rs77878271 in 5,077 Finnish individuals with type 1 diabetes. The low-expression G allele of rs77878271 increased the risk of CVD, independent of confounders. Findings were tested for replication in 852 Danish and 3,678 Finnish individuals with type 1 diabetes. In the meta-analysis, each G allele increased the risk of stroke by 26% (P = 0.04), CAD by 26% (P = 0.006), and CVD by 17% (P = 0.003). In Mendelian randomization, a 1-SD unit decrease in FABP4 increased risk of CAD 2.4-fold. Hence, in contrast with the general population, among patients with type 1 diabetes the low-expression G allele of rs77878271 increased CVD risk, suggesting that genetically low FABP4 levels may be detrimental in the context of type 1 diabetes.


Subject(s)
Cardiovascular Diseases/genetics , Diabetes Mellitus, Type 1/genetics , Fatty Acid-Binding Proteins/genetics , Adult , Alleles , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Cohort Studies , Denmark/epidemiology , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/epidemiology , Diabetic Angiopathies/epidemiology , Diabetic Angiopathies/genetics , Female , Finland/epidemiology , Gene Expression Regulation , Genetic Association Studies , Genetic Predisposition to Disease , Humans , Male , Mendelian Randomization Analysis , Middle Aged , Polymorphism, Single Nucleotide , Risk Factors
11.
Diabetes Care ; 44(7): 1706-1713, 2021 07.
Article in English | MEDLINE | ID: mdl-34031143

ABSTRACT

OBJECTIVE: Obesity, which is associated with nonalcoholic fatty liver (NAFL), has increased among people with type 1 diabetes. Therefore, we explored the associations between body fat distribution and NAFL in this population. RESEARCH DESIGN AND METHODS: This study included 121 adults with type 1 diabetes from the Finnish Diabetic Nephropathy (FinnDiane) Study for whom NAFL was determined by magnetic resonance imaging. Body composition was assessed by dual-energy X-ray absorptiometry. Genetic data concerning PNPLA3 rs738409 and TM6SF2 rs58542926 were available as a directly genotyped polymorphism. Associations between body fat distribution, waist-to-height ratio (WHtR), BMI, and NAFL were explored using logistic regression. A receiver operating characteristic (ROC) curve was used to determine the WHtR and BMI thresholds with the highest sensitivity and specificity to detect NAFL. RESULTS: Median age was 38.5 (33-43.7) years, duration of diabetes was 21.2 (17.9-28.4) years, 52.1% were women, and the prevalence of NAFL was 11.6%. After adjusting for sex, age, duration of diabetes, and PNPLA3 rs738409, the volume (P = 0.03) and percentage (P = 0.02) of visceral adipose tissue were associated with NAFL, whereas gynoid, appendicular, and total adipose tissues were not. The area under the curve between WHtR and NAFL was larger than BMI and NAFL (P = 0.04). The WHtR cutoff of 0.5 showed the highest sensitivity (86%) and specificity (55%), whereas the BMI of 26.6 kg/m2 showed 79% sensitivity and 57% specificity. CONCLUSIONS: Visceral adipose tissue is associated with NAFL in adults with type 1 diabetes, and WHtR may be considered when screening for NAFL in this population.


Subject(s)
Diabetes Mellitus, Type 1 , Non-alcoholic Fatty Liver Disease , Adult , Body Fat Distribution , Body Mass Index , Diabetes Mellitus, Type 1/complications , Female , Humans , Non-alcoholic Fatty Liver Disease/diagnostic imaging , Non-alcoholic Fatty Liver Disease/epidemiology , Non-alcoholic Fatty Liver Disease/genetics , Obesity , ROC Curve , Waist Circumference
12.
Sci Rep ; 11(1): 8919, 2021 04 26.
Article in English | MEDLINE | ID: mdl-33903634

ABSTRACT

H-ficolin recognizes patterns on microorganisms and stressed cells and can activate the lectin pathway of the complement system. We aimed to assess H-ficolin in relation to the progression of diabetic kidney disease (DKD), all-cause mortality, diabetes-related mortality, and cardiovascular events. Event rates per 10-unit H-ficolin-increase were compared in an observational follow-up of 2,410 individuals with type 1 diabetes from the FinnDiane Study. DKD progression occurred in 400 individuals. The unadjusted hazard ratio (HR) for progression was 1.29 (1.18-1.40) and 1.16 (1.05-1.29) after adjustment for diabetes duration, sex, HbA1c, systolic blood pressure, and smoking status. After adding triglycerides to the model, the HR decreased to 1.07 (0.97-1.18). In all, 486 individuals died, including 268 deaths of cardiovascular causes and 192 deaths of complications to diabetes. HRs for all-cause mortality and cardiovascular mortality were 1.13 (1.04-1.22) and 1.05 (0.93-1.17), respectively, in unadjusted analyses. These estimates lost statistical significance in adjusted models. However, the unadjusted HR for diabetes-related mortality was 1.19 (1.05-1.35) and 1.18 (1.02-1.37) with the most stringent adjustment level. Our results, therefore, indicate that H-ficolin predicts diabetes-related mortality, but neither all-cause mortality nor fatal/non-fatal cardiovascular events. Furthermore, H-ficolin is associated with DKD progression, however, not independently of the fully adjusted model.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 1 , Diabetic Nephropathies , Lectins/blood , Models, Cardiovascular , Adult , Cardiovascular Diseases/blood , Cardiovascular Diseases/etiology , Cardiovascular Diseases/mortality , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/mortality , Diabetic Nephropathies/blood , Diabetic Nephropathies/mortality , Female , Finland , Follow-Up Studies , Humans , Male , Middle Aged
13.
Diabetologia ; 63(7): 1349-1354, 2020 07.
Article in English | MEDLINE | ID: mdl-32270254

ABSTRACT

AIMS/HYPOTHESIS: Plasma kallikrein is the central mediator of the plasma kallikrein-kinin system, which is involved both in vascular control and thrombin formation cascades. The plasma kallikrein-kinin system has also been considered protective in pathological conditions, but the impact of plasma kallikreins on diabetic nephropathy remains unknown. The objective of this cross-sectional study was to explore the association of plasma kallikrein with diabetic nephropathy. METHODS: We measured plasma kallikrein activity in 295 individuals with type 1 diabetes at various stages of diabetic nephropathy, and we tested the genetic association between the plasma kallikrein-kinin system and kidney function in 4400 individuals with type 1 diabetes. RESULTS: Plasma kallikrein activity was associated with diabetes duration (p < 0.001) and eGFR (p < 0.001), and plasma kallikrein activity was lower with more advanced diabetic nephropathy, being lowest in individuals on dialysis. The minor alleles of the KNG1 rs5030062 and rs710446 variants, which have previously been associated with increased plasma pre-kallikrein and/or factor XI (FXI) protein levels, were associated with higher eGFR (rs5030062 ß = 0.03, p = 0.01; rs710446 ß = 0.03, p = 0.005) in the FinnDiane cohort of 4400 individuals with type 1 diabetes. CONCLUSIONS/INTERPRETATION: Plasma kallikrein activity and genetic variants known to increase the plasma kallikrein level are associated with higher eGFR in individuals with type 1 diabetes, suggesting that plasma kallikrein might have a protective effect in diabetic nephropathy.


Subject(s)
Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/physiopathology , Kidney/metabolism , Plasma Kallikrein/metabolism , Adult , Cross-Sectional Studies , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/physiopathology , Factor XI/metabolism , Female , Genotyping Techniques , Glomerular Filtration Rate/physiology , Humans , Kidney/physiology , Male , Middle Aged , Polymorphism, Single Nucleotide/genetics , Quality Control
14.
Cardiovasc Diabetol ; 18(1): 88, 2019 07 09.
Article in English | MEDLINE | ID: mdl-31288813

ABSTRACT

BACKGROUND: Hypertension is one of the strongest risk factors for stroke in the general population, while systolic blood pressure has been shown to independently increase the risk of stroke in type 1 diabetes. The aim of this study was to elucidate the association between different blood pressure variables and risk of stroke in type 1 diabetes, and to explore potential nonlinearity of this relationship. METHODS: We included 4105 individuals with type 1 diabetes without stroke at baseline, participating in the nationwide Finnish Diabetic Nephropathy Study. Mean age at baseline was 37.4 ± 11.9 years, median duration of diabetes 20.9 (interquartile range 11.5-30.4) years, and 52% were men. Office systolic blood pressure (SBP) and diastolic blood pressure (DBP) were measured. Based on these pulse pressure (PP) and mean arterial pressure (MAP) were calculated. Strokes were classified based on medical and autopsy records, as well as neuroimaging. Cox proportional hazard models were performed to study how the different blood pressure variables affected the risk of stroke and its subtypes. RESULTS: During median follow-up time of 11.9 (9.21-13.9) years, 202 (5%) individuals suffered an incident stroke; 145 (72%) were ischemic and 57 (28%) hemorrhagic. SBP, DBP, PP, and MAP all independently increased the risk of any stroke. SBP, PP, and MAP increased the risk of ischemic stroke, while SBP, DBP, and MAP increased the risk of hemorrhagic stroke. SBP was strongly associated with stroke with a hazard ratio of 1.20 (1.11-1.29)/10 mmHg. When variables were modeled using restricted cubic splines, the risk of stroke increased linearly for SBP, MAP, and PP, and non-linearly for DBP. CONCLUSIONS: The different blood pressure variables are all independently associated with increased risk of stroke in individuals with type 1 diabetes. The risk of stroke, ischemic stroke, and hemorrhagic stroke increases linearly at blood pressure levels less than the current recommended treatment guidelines.


Subject(s)
Blood Pressure , Brain Ischemia/epidemiology , Diabetes Mellitus, Type 1/epidemiology , Hypertension/epidemiology , Intracranial Hemorrhages/epidemiology , Stroke/epidemiology , Adult , Antihypertensive Agents/therapeutic use , Blood Pressure/drug effects , Brain Ischemia/physiopathology , Brain Ischemia/urine , Diabetes Mellitus, Type 1/physiopathology , Diabetes Mellitus, Type 1/urine , Female , Finland/epidemiology , Humans , Hypertension/drug therapy , Hypertension/physiopathology , Hypertension/urine , Incidence , Intracranial Hemorrhages/physiopathology , Intracranial Hemorrhages/urine , Male , Middle Aged , Natriuresis , Potassium/urine , Prognosis , Renal Elimination , Risk Assessment , Risk Factors , Sodium/urine , Stroke/physiopathology , Stroke/urine , Time Factors
15.
Diabetologia ; 62(7): 1268-1274, 2019 07.
Article in English | MEDLINE | ID: mdl-31127314

ABSTRACT

AIMS/HYPOTHESIS: Activation of the receptor for AGE (RAGE) has been shown to be associated with diabetic nephropathy. The soluble isoform of RAGE (sRAGE) is considered to function as a decoy receptor for RAGE ligands and thereby protects against diabetic complications. A possible association between sRAGE and diabetic nephropathy is still, however, controversial and a more comprehensive analysis of sRAGE with respect to diabetic nephropathy in type 1 diabetes is therefore warranted. METHODS: sRAGE was measured in baseline serum samples from 3647 participants with type 1 diabetes from the nationwide multicentre Finnish Diabetic Nephropathy (FinnDiane) Study. Associations between sRAGE and diabetic nephropathy, as well as sRAGE and diabetic nephropathy progression, were evaluated by regression, competing risks and receiver operating characteristic curve analyses. The non-synonymous SNP rs2070600 (G82S) was used to test causality in the Mendelian randomisation analysis. RESULTS: Baseline sRAGE concentrations were highest in participants with diabetic nephropathy, compared with participants with a normal AER or those with microalbuminuria. Baseline sRAGE was associated with progression from macroalbuminuria to end-stage renal disease (ESRD) in the competing risks analyses, but this association disappeared when eGFR was entered into the model. The SNP rs2070600 was strongly associated with sRAGE concentrations and with progression from macroalbuminuria to ESRD. However, Mendelian randomisation analysis did not support a causal role for sRAGE in progression to ESRD. CONCLUSIONS/INTERPRETATION: sRAGE is associated with progression from macroalbuminuria to ESRD, but does not add predictive value on top of conventional risk factors. Although sRAGE is a biomarker of diabetic nephropathy, in light of the Mendelian randomisation analysis it does not seem to be causally related to progression from macroalbuminuria to ESRD.


Subject(s)
Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 1/pathology , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Receptor for Advanced Glycation End Products/metabolism , Adult , Albuminuria/metabolism , Albuminuria/pathology , Disease Progression , Female , Finland , Glomerular Filtration Rate/physiology , Humans , Male , Middle Aged , Risk Factors
16.
J Clin Endocrinol Metab ; 104(11): 5195-5204, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31034018

ABSTRACT

CONTEXT: The relationship between body mass index (BMI) and mortality may differ between patients with type 1 diabetes and the general population; it is not known which clinical characteristics modify the relationship. OBJECTIVE: Our aim was to assess the relationship between BMI and mortality and the interaction with clinically meaningful factors. DESIGN, SETTING, AND PARTICIPANTS: This prospective study included 5836 individuals with type 1 diabetes from the FinnDiane study. MAIN OUTCOME MEASURE AND METHODS: We retrieved death data for all participants on 31 December 2015. We estimated the effect of BMI on the risk of mortality using a Cox proportional hazards model with BMI as a restricted cubic spline as well as effect modification by adding interaction terms to the spline. RESULTS: During a median of 13.7 years, 876 individuals died. The relationship between baseline BMI and all-cause mortality was reverse J-shaped. When analyses were restricted to those with normal albumin excretion rate, the relationship was U-shaped. The nadir BMI (BMI with the lowest mortality) was in the normal weight region (24.3 to 24.8 kg/m2); however, among individuals with diabetic nephropathy, the nadir BMI was in the overweight region (25.9 to 26.1 kg/m2). Diabetic nephropathy, diabetes-onset age, and sex modified the relationship between BMI and mortality (Pinteraction < 0.05). CONCLUSIONS: Normal weight is optimal for individuals with type 1 diabetes to delay mortality, whereas underweight might be an indication of underlying complications. Maintaining normal weight may translate into reduced risk of mortality in type 1 diabetes, particularly for individuals of male sex, later diabetes-onset age, and normal albumin excretion rate.


Subject(s)
Body Mass Index , Diabetes Mellitus, Type 1/mortality , Obesity/mortality , Adolescent , Adult , Aged , Aged, 80 and over , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/physiopathology , Female , Humans , Male , Middle Aged , Mortality , Obesity/complications , Obesity/physiopathology , Prospective Studies , Young Adult
17.
Diabetes ; 64(12): 4238-46, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26307587

ABSTRACT

Obesity has been posited as an independent risk factor for diabetic kidney disease (DKD), but establishing causality from observational data is problematic. We aimed to test whether obesity is causally related to DKD using Mendelian randomization, which exploits the random assortment of genes during meiosis. In 6,049 subjects with type 1 diabetes, we used a weighted genetic risk score (GRS) comprised of 32 validated BMI loci as an instrument to test the relationship of BMI with macroalbuminuria, end-stage renal disease (ESRD), or DKD defined as presence of macroalbuminuria or ESRD. We compared these results with cross-sectional and longitudinal observational associations. Longitudinal analysis demonstrated a U-shaped relationship of BMI with development of macroalbuminuria, ESRD, or DKD over time. Cross-sectional observational analysis showed no association with overall DKD, higher odds of macroalbuminuria (for every 1 kg/m(2) higher BMI, odds ratio [OR] 1.05, 95% CI 1.03-1.07, P < 0.001), and lower odds of ESRD (OR 0.95, 95% CI 0.93-0.97, P < 0.001). Mendelian randomization analysis showed a 1 kg/m(2) higher BMI conferring an increased risk in macroalbuminuria (OR 1.28, 95% CI 1.11-1.45, P = 0.001), ESRD (OR 1.43, 95% CI 1.20-1.72, P < 0.001), and DKD (OR 1.33, 95% CI 1.17-1.51, P < 0.001). Our results provide genetic evidence for a causal link between obesity and DKD in type 1 diabetes. As obesity prevalence rises, this finding predicts an increase in DKD prevalence unless intervention should occur.


Subject(s)
Albuminuria/etiology , Diabetes Mellitus, Type 1/complications , Diabetic Nephropathies/etiology , Kidney Failure, Chronic/etiology , Obesity/physiopathology , Adult , Albuminuria/epidemiology , Albuminuria/genetics , Body Mass Index , Case-Control Studies , Cohort Studies , Cross-Sectional Studies , Diabetic Nephropathies/epidemiology , Diabetic Nephropathies/genetics , Diabetic Nephropathies/physiopathology , Female , Finland/epidemiology , Genetic Loci , Genetic Predisposition to Disease , Humans , Incidence , Kidney Failure, Chronic/epidemiology , Kidney Failure, Chronic/genetics , Longitudinal Studies , Male , Mendelian Randomization Analysis , Middle Aged , Obesity/complications , Obesity/epidemiology , Obesity/genetics , Prevalence , Risk Factors
18.
Diabetes Care ; 38(6): 1130-7, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25784666

ABSTRACT

OBJECTIVE: We evaluated the predictive value and clinical benefit of urinary kidney injury molecule (KIM)-1 for progression of diabetic nephropathy (DN) in type 1 diabetes. We also investigated its causal role for the decrease of estimated glomerular filtration rate (eGFR) by a Mendelian randomization (MR) approach. RESEARCH DESIGN AND METHODS: We followed 1,573 patients with type 1 diabetes for 6 years. KIM-1 was measured at baseline and normalized with urinary creatinine. KIM-1 predictive value was evaluated by Cox regression, while its added predictive benefit was evaluated using a panel of statistical indexes. The causality for the loss of renal function was evaluated with MR, utilizing the top signal from our genome-wide association study (GWAS) as the instrumental variable. RESULTS: KIM-1 was not an independent predictor of progression of DN when adjusted for albumin excretion rate (AER) and added no prognostic benefit to AER or eGFR. In multiple regressions, KIM-1 was associated with lower eGFR independently of diabetes duration (ß = -4.066; P < 0.0001) but not of AER. In our GWAS, rs2036402 in the KIM1 gene was strongly associated with KIM-1 (ß = -0.51; P = 6.5 × 10(-38)). In the MR, KIM-1 was associated with lower eGFR, independently of diabetes duration and AER (ß = -5.044; P = 0.040), suggesting a causal relationship. CONCLUSIONS: KIM-1 did not predict progression to end-stage renal disease independently of AER and added no prognostic benefit to current biomarkers. Nevertheless, the MR showed that the inverse association of increased KIM-1 levels with lower eGFR is likely to represent a causal link.


Subject(s)
Diabetes Mellitus, Type 1/diagnosis , Diabetic Nephropathies/diagnosis , Kidney Failure, Chronic/diagnosis , Membrane Glycoproteins/urine , Adult , Age of Onset , Biomarkers/urine , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/physiopathology , Diabetic Nephropathies/genetics , Diabetic Nephropathies/physiopathology , Disease Progression , Female , Genome-Wide Association Study , Glomerular Filtration Rate/genetics , Hepatitis A Virus Cellular Receptor 1 , Humans , Kidney Failure, Chronic/genetics , Kidney Failure, Chronic/physiopathology , Kidney Function Tests , Male , Membrane Glycoproteins/genetics , Multivariate Analysis , Prognosis , Receptors, Virus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...