Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 153
Filter
1.
GMS J Med Educ ; 41(2): Doc19, 2024.
Article in English | MEDLINE | ID: mdl-38779701

ABSTRACT

The evaluation of teaching can be an essential driver for curriculum development. Instruments for teaching evaluation are not only used for the purpose of quality assurance but also in the context of medical education research. Therefore, they must meet the common requirements for reliability and validity. This position paper from the GMA Teaching Evaluation Committee discusses strategic and methodological aspects of evaluation in the context of undergraduate medical education and related courses; and formulates recommendations for the further development of evaluation. First, a four-step approach to the design and implementation of evaluations is presented, then methodological and practical aspects are discussed in more detail. The focus here is on target and confounding variables, survey instruments as well as aspects of implementation and data protection. Finally, possible consequences from evaluation data for the four dimensions of teaching quality (structural and procedural aspects, teachers and outcomes) are discussed.


Subject(s)
Education, Medical, Undergraduate , Teaching , Humans , Education, Medical, Undergraduate/methods , Education, Medical, Undergraduate/standards , Teaching/standards , Curriculum/standards , Educational Measurement/methods , Program Evaluation/methods , Reproducibility of Results
2.
Front Pharmacol ; 15: 1404938, 2024.
Article in English | MEDLINE | ID: mdl-38818378

ABSTRACT

There is a lack of systematic research exploring cross-species variation in liver lobular geometry and zonation patterns of critical drug-metabolizing enzymes, a knowledge gap essential for translational studies. This study investigated the critical interplay between lobular geometry and key cytochrome P450 (CYP) zonation in four species: mouse, rat, pig, and human. We developed an automated pipeline based on whole slide images (WSI) of hematoxylin-eosin-stained liver sections and immunohistochemistry. This pipeline allows accurate quantification of both lobular geometry and zonation patterns of essential CYP proteins. Our analysis of CYP zonal expression shows that all CYP enzymes (besides CYP2D6 with panlobular expression) were observed in the pericentral region in all species, but with distinct differences. Comparison of normalized gradient intensity shows a high similarity between mice and humans, followed by rats. Specifically, CYP1A2 was expressed throughout the pericentral region in mice and humans, whereas it was restricted to a narrow pericentral rim in rats and showed a panlobular pattern in pigs. Similarly, CYP3A4 is present in the pericentral region, but its extent varies considerably in rats and appears panlobular in pigs. CYP2D6 zonal expression consistently shows a panlobular pattern in all species, although the intensity varies. CYP2E1 zonal expression covered the entire pericentral region with extension into the midzone in all four species, suggesting its potential for further cross-species analysis. Analysis of lobular geometry revealed an increase in lobular size with increasing species size, whereas lobular compactness was similar. Based on our results, zonated CYP expression in mice is most similar to humans. Therefore, mice appear to be the most appropriate species for drug metabolism studies unless larger species are required for other purposes, e.g., surgical reasons. CYP selection should be based on species, with CYP2E1 and CYP2D6 being the most preferable to compare four species. CYP1A2 could be considered as an additional CYP for rodent versus human comparisons, and CYP3A4 for mouse/human comparisons. In conclusion, our image analysis pipeline together with suggestions for species and CYP selection can serve to improve future cross-species and translational drug metabolism studies.

3.
Bioinformatics ; 40(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38741151

ABSTRACT

MOTIVATION: Systems biology aims to better understand living systems through mathematical modelling of experimental and clinical data. A pervasive challenge in quantitative dynamical modelling is the integration of time series measurements, which often have high variability and low sampling resolution. Approaches are required to utilize such information while consistently handling uncertainties. RESULTS: We present BayModTS (Bayesian modelling of time series data), a new FAIR (findable, accessible, interoperable, and reusable) workflow for processing and analysing sparse and highly variable time series data. BayModTS consistently transfers uncertainties from data to model predictions, including process knowledge via parameterized models. Further, credible differences in the dynamics of different conditions can be identified by filtering noise. To demonstrate the power and versatility of BayModTS, we applied it to three hepatic datasets gathered from three different species and with different measurement techniques: (i) blood perfusion measurements by magnetic resonance imaging in rat livers after portal vein ligation, (ii) pharmacokinetic time series of different drugs in normal and steatotic mice, and (iii) CT-based volumetric assessment of human liver remnants after clinical liver resection. AVAILABILITY AND IMPLEMENTATION: The BayModTS codebase is available on GitHub at https://github.com/Systems-Theory-in-Systems-Biology/BayModTS. The repository contains a Python script for the executable BayModTS workflow and a widely applicable SBML (systems biology markup language) model for retarded transient functions. In addition, all examples from the paper are included in the repository. Data and code of the application examples are stored on DaRUS: https://doi.org/10.18419/darus-3876. The raw MRI ROI voxel data were uploaded to DaRUS: https://doi.org/10.18419/darus-3878. The steatosis metabolite data are published on FairdomHub: 10.15490/fairdomhub.1.study.1070.1.


Subject(s)
Bayes Theorem , Workflow , Animals , Rats , Humans , Mice , Systems Biology/methods , Liver/metabolism , Software , Magnetic Resonance Imaging/methods
4.
Biomech Model Mechanobiol ; 23(2): 631-653, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38402347

ABSTRACT

Metabolic zonation refers to the spatial separation of metabolic functions along the sinusoidal axes of the liver. This phenomenon forms the foundation for adjusting hepatic metabolism to physiological requirements in health and disease (e.g., metabolic dysfunction-associated steatotic liver disease/MASLD). Zonated metabolic functions are influenced by zonal morphological abnormalities in the liver, such as periportal fibrosis and pericentral steatosis. We aim to analyze the interplay between microperfusion, oxygen gradient, fat metabolism and resulting zonated fat accumulation in a liver lobule. Therefore we developed a continuum biomechanical, tri-phasic, bi-scale, and multicomponent in silico model, which allows to numerically simulate coupled perfusion-function-growth interactions two-dimensionally in liver lobules. The developed homogenized model has the following specifications: (i) thermodynamically consistent, (ii) tri-phase model (tissue, fat, blood), (iii) penta-substances (glycogen, glucose, lactate, FFA, and oxygen), and (iv) bi-scale approach (lobule, cell). Our presented in silico model accounts for the mutual coupling between spatial and time-dependent liver perfusion, metabolic pathways and fat accumulation. The model thus allows the prediction of fat development in the liver lobule, depending on perfusion, oxygen and plasma concentration of free fatty acids (FFA), oxidative processes, the synthesis and the secretion of triglycerides (TGs). The use of a bi-scale approach allows in addition to focus on scale bridging processes. Thus, we will investigate how changes at the cellular scale affect perfusion at the lobular scale and vice versa. This allows to predict the zonation of fat distribution (periportal or pericentral) depending on initial conditions, as well as external and internal boundary value conditions.


Subject(s)
Fatty Liver , Liver , Humans , Liver/physiology , Glucose , Lactic Acid/metabolism , Fatty Liver/metabolism , Computer Simulation , Oxygen/metabolism
5.
J Cancer Res Clin Oncol ; 150(2): 100, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38383696

ABSTRACT

PURPOSE: The impact of psychological factors on the incidence of hepatocellular carcinoma (HCC) in humans remains unclear. Mendelian randomization (MR) study is a novel approach aimed at unbiased detection of causal effects. Therefore, we conducted a two-sample MR to determine if there is a causal relationship between psychological distress (PD), participation in leisure/social activities of religious groups (LARG), and HCC. METHODS: The genetic summary data of exposures and outcome were retrieved from genome-wide association studies (GWAS). We used PD and LARG as exposures and HCC as outcome. Five MR methods were used to investigate the causal relationship between PD, LARG, and HCC. The result of inverse variance weighted (IVW) method was deemed as principal result. Besides, we performed a comprehensive sensitivity analysis to verify the robustness of the results. RESULTS: The IVW results showed that PD [odds ratio (OR) 1.006, 95% confidence interval (CI) 1.000-1.011, P = 0.033] and LARG (OR 0.994, 95% CI 0.988-1.000, P = 0.035) were causally associated with the incidence of HCC. Sensitivity analysis did not identify any bias in the results. CONCLUSION: PD turned out to be a mild risk factor for HCC. In contrast, LARG is a protective factor for HCC. Therefore, it is highly recommended that people with PD are seeking positive leisure activities such as participation in formal religious social activities, which may help them reduce the risk of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/etiology , Carcinoma, Hepatocellular/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Liver Neoplasms/etiology , Liver Neoplasms/genetics , Risk Factors
6.
J Clin Med ; 13(2)2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38256583

ABSTRACT

BACKGROUND: Patients with angina are often suffering from comorbidities such as varying degrees of hepatic dysfunction. However, the impact of angina on the incidence of hepatic failure (HF) remains unclear. METHODS: The genetic data were retrieved from genome-wide association studies. Five Mendelian randomization methods were used to investigate the causal relationship between unstable angina (UA), stable angina (SA), and HF. The result of the Inverse variance weighted (IVW) method was deemed the principal result. In addition, we performed a comprehensive sensitivity analysis to verify the robustness of the results. RESULTS: The IVW results showed that UA (Odds ratio (OR): 2.055, 95% confidence interval (CI): 1.171-3.606, p = 0.012) was causally associated with the incidence of HF. SA (OR: 1.122, 95% CI: 0.738-1.706, p = 0.591) was not causally associated with the incidence of HF. Sensitivity analysis did not identify any bias in the results. CONCLUSIONS: UA turned out to be a risk factor for HF. SA does not have a significant causal effect on HF. Therefore, it is highly recommended that patients with chronic liver disease seek prompt medical attention and undergo regular monitoring of liver function when experiencing UA. This may help them to reduce the risk of HF.

7.
J Vis Exp ; (199)2023 09 25.
Article in English | MEDLINE | ID: mdl-37811934

ABSTRACT

This protocol presents an optimized erythrocytes-free NEVLP system using mouse livers. Ex vivo preservation of mouse livers was achieved by employing modified cannulas and techniques adapted from conventional commercial ex vivo perfusion equipment. The system was utilized to evaluate the preservation outcomes following 12 h of perfusion. C57BL/6J mice served as liver donors, and the livers were explanted by cannulating the portal vein (PV) and bile duct (BD), and subsequently flushing the organ with warm (37 °C) heparinized saline. Then, the explanted livers were transferred to the perfusion chamber and subjected to normothermic oxygenated machine perfusion (NEVLP). Inlet and outlet perfusate samples were collected at 3 h intervals for perfusate analysis. Upon completion of the perfusion, liver samples were obtained for histological analysis, with morphological integrity assessed using modified Suzuki-Score through Hematoxylin-Eosin (HE) staining. The optimization experiments yielded the following findings: (1) mice weighing over 30 g were deemed more suitable for the experiment due to the larger size of their bile duct (BD). (2) a 2 Fr (outer diameter = 0.66 mm) polyurethane cannula was better suited for cannulating the portal vein (PV) when compared to a polypropylene cannula. This was attributed to the polyurethane material's enhanced grip, resulting in reduced catheter slippage during the transfer from the body to the organ chamber. (3) for cannulation of the bile duct (BD), a 1 Fr (outer diameter = 0.33 mm) polyurethane cannula was found to be more effective compared to the polypropylene UT - 03 (outer diameter = 0.30 mm) cannula. With this optimized protocol, mouse livers were successfully preserved for a duration of 12 h without significant impact on the histological structure. Hematoxylin-Eosin (HE) staining revealed a well-preserved morphological architecture of the liver, characterized by predominantly viable hepatocytes with clearly visible nuclei and mild dilation of hepatic sinusoids.


Subject(s)
Liver Transplantation , Polypropylenes , Mice , Animals , Eosine Yellowish-(YS) , Hematoxylin , Polyurethanes , Liver Transplantation/methods , Organ Preservation/methods , Mice, Inbred C57BL , Liver/pathology , Perfusion/methods
8.
Free Radic Biol Med ; 204: 151-160, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37105418

ABSTRACT

Ischemia-reperfusion injury is a critical liver condition during hepatic transplantation, trauma, or shock. An ischemic deprivation of antioxidants and energy characterizes liver injury in such cases. In the face of increased reactive oxygen production, hepatocytes are vulnerable to the reperfusion driving ROS generation and multiple cell-death mechanisms. In this study, we investigate the importance of hydrogen sulfide as part of the liver's antioxidant pool and the therapeutic potency of the hydrogen sulfide donors sodium sulfide (Na2S, fast releasing) and sodium thiosulfate (STS, Na2S2O3, slow releasing). The mitoprotection and toxicity of STS and Na2S were investigated on isolated mitochondria and a liver perfusion oxidative stress model by adding text-butyl hydroperoxide and hydrogen sulfide donors. The respiratory capacity of mitochondria, hepatocellular released LDH, glutathione, and lipid-peroxide levels were quantified. In addition, wild-type and cystathionine-γ-lyase knockout mice were subjected to warm selective ischemia-reperfusion injury by clamping the main inflow for 1 h followed by reperfusion of 1 or 24 h. A subset of animals was treated with STS shortly before reperfusion. Glutathione, plasma ALT, and lipid-peroxide levels were investigated alongside mitochondrial changes in structure (electron microscopy) and function (intravital microscopy). Liver tissue necrosis quantified 24 h after reperfusion indicates the net effects of the treatment on the organ. STS refuels and protects the endogenous antioxidant pool during liver ischemia-reperfusion injury. In addition, STS-mediated ROS scavenging significantly reduced lipid peroxidation and mitochondrial damage, resulting in better molecular and histopathological preservation of the liver tissue architecture. STS prevents tissue damage in liver ischemia-reperfusion injury by increasing the liver's antioxidant pool, thereby protecting mitochondrial integrity.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Hydrogen Sulfide , Reperfusion Injury , Mice , Animals , Antioxidants/pharmacology , Reactive Oxygen Species , Liver/pathology , Reperfusion Injury/drug therapy , Reperfusion Injury/pathology , Ischemia/pathology , Glutathione , Peroxides , Reperfusion , Lipids
9.
Liver Int ; 43(1): 34-48, 2023 01.
Article in English | MEDLINE | ID: mdl-35986903

ABSTRACT

BACKGROUND AND AIMS: Chronic liver disease (CLD) patients and liver transplant (LT) recipients have an increased risk of morbidity and mortality from coronavirus disease 2019 (COVID-19). The immunogenicity of COVID-19 vaccines in CLD patients and LT recipients is poorly understood. The present study aimed to evaluate the immunogenicity of COVID-19 vaccines in CLD patients and LT recipients. METHODS: We searched electronic databases for eligible studies. Two reviewers independently conducted the literature search, extracted the data and assessed the risk of bias of included studies. The rates of detectable immune response were pooled from single-arm studies. For comparative studies, we compared the rates of detectable immune response between patients and healthy controls. The meta-analysis was conducted using the Stata software with a random-effects model. RESULTS: In total, 19 observational studies involving 4191 participants met the inclusion criteria. The pooled rates of detectable humoral immune response after two doses of COVID-19 vaccination in CLD patients and LT recipients were 95% (95% confidence interval [CI] = 88%-99%) and 66% (95% CI = 57%-74%) respectively. After two doses of vaccination, the humoral immune response rate was similar in CLD patients and healthy controls (risk ratio [RR] = 0.96; 95% CI = 0.90-1.02; p = .14). In contrast, LT recipients had a lower humoral immune response rate after two doses of vaccination than healthy controls (RR = 0.68; 95% CI = 0.59-0.77; p < .01). CONCLUSIONS: Our meta-analysis demonstrated that COVID-19 vaccination induced strong humoral immune responses in CLD patients but poor humoral immune responses in LT recipients.


Subject(s)
COVID-19 , Liver Diseases , Liver Transplantation , Humans , COVID-19 Vaccines , COVID-19/prevention & control , Databases, Factual , Transplant Recipients , Antibodies, Viral
10.
Sci Rep ; 12(1): 21825, 2022 12 17.
Article in English | MEDLINE | ID: mdl-36528753

ABSTRACT

Little is known about the impact of morphological disorders in distinct zones on metabolic zonation. It was described recently that periportal fibrosis did affect the expression of CYP proteins, a set of pericentrally located drug-metabolizing enzymes. Here, we investigated whether periportal steatosis might have a similar effect. Periportal steatosis was induced in C57BL6/J mice by feeding a high-fat diet with low methionine/choline content for either two or four weeks. Steatosis severity was quantified using image analysis. Triglycerides and CYP activity were quantified in photometric or fluorometric assay. The distribution of CYP3A4, CYP1A2, CYP2D6, and CYP2E1 was visualized by immunohistochemistry. Pharmacokinetic parameters of test drugs were determined after injecting a drug cocktail (caffeine, codeine, and midazolam). The dietary model resulted in moderate to severe mixed steatosis confined to periportal and midzonal areas. Periportal steatosis did not affect the zonal distribution of CYP expression but the activity of selected CYPs was associated with steatosis severity. Caffeine elimination was accelerated by microvesicular steatosis, whereas midazolam elimination was delayed in macrovesicular steatosis. In summary, periportal steatosis affected parameters of pericentrally located drug metabolism. This observation calls for further investigations of the highly complex interrelationship between steatosis and drug metabolism and underlying signaling mechanisms.


Subject(s)
Fatty Liver , Midazolam , Mice , Animals , Midazolam/pharmacology , Caffeine/pharmacokinetics , Metabolic Clearance Rate , Cytochrome P-450 Enzyme System/metabolism
11.
BMC Med Genomics ; 15(1): 211, 2022 10 07.
Article in English | MEDLINE | ID: mdl-36207717

ABSTRACT

BACKGROUND: In previous studies, five vasoactive drugs were investigated for their effect on the recovery process after extended liver resection without observing relevant improvements. We hypothesized that an analysis of gene expression could help to identify potentially druggable pathways and could support the selection of promising drug candidates. METHODS: Liver samples obtained from rats after combined 70% partial hepatectomy and right median hepatic vein ligation (n = 6/group) sacrificed at 0 h, 24 h, 48 h, and 7days were selected for this study. Liver samples were collected from differentially perfused regions of the median lobe (obstruction-zone, border-zone, normal-zone). Gene expression profiling of marker genes regulating hepatic hemodynamics, vascular remodeling, and liver regeneration was performed with microfluidic chips. We used 3 technical replicates from each sample. Raw data were normalized using LEMming and differentially expressed genes were identified using LIMMA. RESULTS: The strongest differences were found in obstruction-zone at 24 h and 48 h postoperatively compared to all other groups. mRNA expression of marker genes from hepatic hemodynamics pathways (iNOS,Ptgs2,Edn1) was most upregulated. CONCLUSION: These upregulated genes suggest a strong vasoconstrictive effect promoting arterial hypoperfusion in the obstruction-zone. Reducing iNOS expression using selective iNOS inhibitors seems to be a promising approach to promote vasodilation and liver regeneration.


Subject(s)
Hepatectomy , Liver Regeneration , Animals , Cyclooxygenase 2 , Gene Expression Profiling , Liver/metabolism , Liver Regeneration/genetics , RNA, Messenger/metabolism , Rats
12.
Innov Surg Sci ; 7(1): 13-22, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35974775

ABSTRACT

Background: Modern therapy concepts are of limited success in patients with cholestasis (e.g., biliary occluding malignancies). Therefore, we established a new animal model enabling simultaneous investigation of liver regeneration and hepato-biliary remodelling in biliary obstructed and biliary non-obstructed liver lobes. Methods: Biliary occlusion of different extent was induced in 50 male rats: Ligation and transection of the common bile duct (100% of liver, tBDT, n=25); or of the left bile duct (70% of liver, sBDT, n=25). At postoperative days 1, 3, 7, 14 and 28 we assessed the hepatic histomorphological alterations, proliferative repair, progress of liver fibrosis (HE, BrdU, EvG) and signs of liver regeneration (liver lobe weight gain). In addition, we determined systemic markers of hepatocellular injury (ASAT, ALAT), cholestasis (Bilirubin) and synthetic liver function (INR). The animals were monitored daily (body weight gain, stress score, survival). Results: All animals survived until the planned date of sacrifice. sBDT induced in the biliary occluded liver lobes similar histomorphological alterations, proliferative repair and progress of liver fibrosis like tBDT. In the biliary non-ligated liver lobes in sBDT animals we noticed a temporarily enhanced biliary proliferation and a persistent low grade liver fibrosis in the periportal area. Conclusions: Our model of sBDT represents a safe and valid method to induce selective cholestasis. The model enables further comparative investigation of liver regeneration in different extents of occlusive cholestasis (e.g., mimicking biliary occluding malignancies).

13.
PLoS One ; 17(7): e0271975, 2022.
Article in English | MEDLINE | ID: mdl-35881613

ABSTRACT

BACKGROUND: The selection of the appropriate species is one of the key issues in experimental medicine. Bile duct ligation is the mostly used experimental model in rodents to explore special aspects of occlusive cholestasis. We aimed to clarify if rats or mice are suitable for the same or different aspects in cholestasis research. METHODS: We induced biliary occlusion by ligation and transection of the common bile duct (tBDT) in rats and mice (each n = 25). Recovery from surgical stress was assessed by daily scoring (stress score, body weight). At five different time points (days 1, 3, 7, 14, 28 after tBDT) we investigated hepatic morphometric and architectural alterations (Haematoxylin-Eosin staining, Elastica van Gieson staining) and the proliferative activities of parenchyma cells (Bromodeoxyuridine staining); as well as established systemic markers for liver synthesis, hepatocellular damage and renal dysfunction. RESULTS: We found substantial differences regarding survival (rats: 100%, 25/25 vs. mice 92%, 22/25, p = 0.07) and body weight gain (p<0.05 at postoperative days 14 and 28 (POD)). Rats showed a faster and progressive hepatobiliary remodelling than mice (p<0.05 at POD 7+14+28), resulting in: i) stronger relative loss of hepatocellular mass (rats by 31% vs. mice by 15% until POD 28; p<0.05 at POD 7+14+28); ii) rapidly progressing liver fibrosis (p<0.05 at POD 14); iii) a faster and stronger proliferative response of parenchyma cells (hepatocytes: p<0.05 at POD 1+14+18; cholangiocytes: p<0.05 at POD 1+3+7+28); and iv) only tiny bile infarcts compared to mice (p<0.05 at POD 1+3+7+14). Both species showed comparable elevated markers of hepatocellular damage and serum bilirubin. CONCLUSION: The key difference between rats and mice are the severity and dynamics of histological alterations, possibly accounting for their different susceptibilities for (septic) complications with low survival (mice).


Subject(s)
Cholestasis , Animals , Bile Ducts/surgery , Biomarkers , Body Weight , Cholestasis/pathology , Ligation/adverse effects , Liver/pathology , Mice , Rats , Rats, Wistar
14.
Front Bioeng Biotechnol ; 10: 833244, 2022.
Article in English | MEDLINE | ID: mdl-35651544

ABSTRACT

The use of biologically derived vessels as small-diameter vascular grafts in vascular diseases is currently intensely studied. Vessel decellularization provides a biocompatible scaffold with very low immunogenicity that avoids immunosuppression after transplantation. Good scaffold preservation is important as it facilitates successful cell repopulation. In addition, mechanical characteristics have to be carefully evaluated when the graft is intended to be used as an artery due to the high pressures the vessel is subjected to. Here, we present a new and fast decellularization protocol for porcine carotid arteries, followed by investigation of the quality of obtained vessel scaffolds in terms of maintenance of important extracellular matrix components, mechanical resistance, and compatibility with human endothelial cells. Our results evidence that our decellularization protocol minimally alters both the presence of scaffold proteins and their mechanical behavior and human endothelial cells could adhere to the scaffold in vitro. We conclude that if a suitable protocol is used, a high-quality decellularized arterial scaffold of non-human origin can be promptly obtained, having a great potential to be recellularized and used as an arterial graft in transplantation medicine.

15.
J Clin Exp Hepatol ; 12(3): 755-766, 2022.
Article in English | MEDLINE | ID: mdl-35677523

ABSTRACT

Background: Obstructive cholestasis can lead to significant alterations of the biliary tree depending on the extent and duration of the biliary occlusion. Current experimental studies reported about advanced techniques for corrosion cast and 3D reconstruction (3D-reco) visualizing delicate microvascular structures in animals. We compared these two different techniques for visualization and quantitative assessment of the obstructed murine biliary tree with classical 2D histology. Methods: Male mice (n = 36) were allocated to 3 different experiments. In experiments 1 and 2, we injected two different media (Microfil© for 3D-reco, MV; Batson's No.17 for corrosion cast, CC) into the extrahepatic bile duct. In experiment 3 we sampled liver tissue for 2D histology (HE, BrdU). Time points of interest were days 1, 3, 5, 7, 14, and 28 after biliary occlusion. We used different types of software for quantification of the different samples: IMALYTICS Preclinical for 3D scans (MV); NDP.view2 for the digital photography of CC; HistoKat software for 2D histology. Results: We achieved samples in 75% of the animals suitable for evaluation (MV and CC, each with 9/12). Contrasting of terminal bile ducts (4th order of branches) was achieved with either technique. MV permitted a fast 3D-reco of the hierarchy of the biliary tree, including the 3rd and 4th order of branches in almost all samples (8/9 and 6/9). CC enabled focused evaluation of the hierarchy of the biliary tree, including the 4th to 5th order of branches in almost all samples (9/9 and 8/9). In addition, we detected dense meshes of the smallest bile ducts in almost all CC samples (8/9). MV and CC allowed a quantitative assessment of anatomical details of the 3rd and 4th order branches of almost every sample. The 2D histology identified different kinetics and areas of proliferation of hepatocytes and cholangiocytes. Complementary usage of 3D-reco, corrosion casting and 2D histology matched dense meshes of small bile ducts with areas of intensive proliferative activity of cholangiocytes as periportal proliferative areas of 4th and 5th order branches (∼terminal bile ducts and bile ductules) matched with its morphological information the matching assessment of areas with increased proliferative activity (BrdU) and a partial quantification of the characteristics of the 4th order branches of the biliary tree. Conclusion: The 3D-reco and corrosion casting of the murine biliary tree are feasible and provide a straightforward, robust, and reliable (and more economical) procedure for the visualization and quantitative assessment of architectural alterations, in comparative usage with the 2D histology.

16.
J Cancer Res Clin Oncol ; 148(12): 3243-3256, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35695930

ABSTRACT

PURPOSE: The autophagy inhibitor chloroquine enhances the effect of targeted therapy using tyrosine kinase inhibitor in liver cancer. We would like to further understand the specific mechanism by which chloroquine inhibits the proliferation of tumor cells. METHODS: We used a human hepatocarcinoma cell line (HepG2) as cell culture model. In contrast to the control groups (treated only with complete medium), cells in experimental groups were treated either with complete medium + 40 ng/ml Hepatocyte growth factor (HGF), or with complete medium + 60 µM chloroquine or with complete medium + 40 ng/ml HGF + 60 µM chloroquine for 24 h. Cell number and ATP content were investigated using spectrophotometric assays. Cell proliferation and apoptosis were detected by immunohistochemistry. Cell morphological alterations were examined by Giemsa and H&E staining. Cellular lipid content was determined by Oil Red O staining and Triglyceride quantification assay. Autophagy-related proteins (LC3B and p62) and hepatocyte proliferation-related protein (S6K1) were examined using western blot. The autophagic flux of cells was assessed by mRFP-EGFP-LC3 transfection assay. RESULTS: We found that chloroquine inhibited the proliferation of HepG2 cells, as evidenced by a decrease in cellular ATP content, Ki-67 and S6K1 protein expression and a reduction in cell number. This finding was associated with an increase in lipid content. As expected, chloroquine inhibited autophagy of HepG2 cells, as evidenced by the accumulation of LC3B-II and the significant upregulation of p62. mRFP-EGFP-LC3 transfection assay showed that indeed chloroquine blocked the autophagic flux in HepG2 cells. CONCLUSION: Chloroquine impaired proliferation of HepG2 cells might be due to intracellular accumulation of lipids and inhibition of energy synthesis.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Chloroquine/pharmacology , Carcinoma, Hepatocellular/pathology , Hepatocyte Growth Factor/pharmacology , Liver Neoplasms/pathology , Ki-67 Antigen , Cell Line, Tumor , Microtubule-Associated Proteins/metabolism , Autophagy , Autophagy-Related Proteins , Protein Kinase Inhibitors/pharmacology , Triglycerides/pharmacology , Lipids , Adenosine Triphosphate
17.
Front Surg ; 9: 799669, 2022.
Article in English | MEDLINE | ID: mdl-35548189

ABSTRACT

Background and Aims: Patients with malignant biliary obstruction do not seem to benefit from "two-stage hepatectomy" due to an impairment of liver regeneration. We designed a novel model of "repeated regeneration stimuli" in rats mimicking a "two-stage hepatectomy" with selective or complete biliary occlusion mimicking Klatskin tumors III° or IV°. Using this new model, we wanted to investigate (1) the impact of preexistent cholestasis of different extent on the time course of liver regeneration and (2) the dynamics of hepatobiliary remodeling under regeneration conditions. Materials and Methods: Rats were subjected to a sequence of three operations: surgical induction of biliary occlusion, followed by "repeated regeneration stimuli" consisting of ligation of the left branch of the portal vein (supplying 70% of the liver volume, sPVL) as first stage and a 70%-hepatectomy (70%PHx) as second stage. Biliary occlusion (1st procedure) was induced by ligating and transection of either the common (100%, tBDT) or the left bile duct (70%, sBDT). A sham operation without ligating the bile duct was performed as control (0%, Sham). Two weeks later, on day 14 (POD14), the sPVL (2nd procedure) was performed. Another week later (POD 21), the 70%PHx (3rd procedure) took place and animals were observed for 1 week (POD 28). The first experiment (n = 45 rats) was dedicated to investigating liver regeneration (hypertrophy/atrophy), proliferative activity and hepatobiliary histomorphology (2D-histology: HE, BrdU) in the future liver remnant (FLR). The second experiment (n = 25 rats) was performed to study the dynamics of hepatobiliary remodeling in livers with different regenerative pressure (tBDT only POD21 vs. tBDT only POD 28 vs. tBDT + sPVL vs. tBDT + 70%PHx vs. tBDT + sPVL + 70%PHx) using µCT scans of explanted livers. Effect of biliary occlusion: Total biliary occlusion (tBDT) led to a 2.4-fold increase in whole liver volume due to severe biliary proliferation within 14 days. In contrast, partial biliary occlusion (sBDT) caused only a volume gain of the obstructed liver lobes due to biliary proliferates, resulting in a minor increase of total liver volume (1.7-fold) without an increase in bilirubin levels. Liver regeneration and atrophy: As expected, sPVL caused substantial volume gain (tBDT: 3-fold; sBDT: 2.8-fold; Sham 2.8-fold) of FLR and a substantial volume loss (tBDT: 0.9-fold; sBDT: 0.6-fold; Sham: 0.4-fold) of the portally deprived "future resected lobes" compared to the preoperative liver volume. The subsequent 70%PHx promoted a further volume gain of the FLR in all groups (tBDT: 4-fold; sBDT: 3-fold; Sham 3-fold compared to original volume) until POD 28. Hepatobiliary remodeling: After tBDT, we identified histologically three phases of hepatobiliary remodeling in the FLR. Following tBDT, biliary proliferates developed, replacing about 15% of the hepatocellular tissue. After sPVL we found incomplete restoration of the hepatocellular tissue with a visible reduction of the biliary proliferates. The 70%PHx led to an almost complete recovery of the hepatocellular tissue in the FLR with a nearly normal liver architecture. In contrast, after sBDT and Sham we observed a near normal liver morphology in the FLR at all time points. CT-scanning of the explanted livers and subsequent 3D reconstruction visualized the development of extrahepatic biliary collaterals. Collaterals were detected in 0/5 cases 1 week after sPVL (first regeneration stimulus), and in even more cases (3/5) 1 week after the 70%PHx (second regeneration stimulus). Histological workup identified the typical biliary cuboid epithelium as inner lining of the collaterals and peribiliary glands. Conclusion: Liver volume of the FLR increased in cholestatic rats mainly due to biliary proliferates. Application of repeated regeneration stimuli in the style of a "two-stage hepatectomy" promoted almost full restoration of hepatocellular tissue and architecture in the FLR by reestablishing biliary drainage via formation of biliary collaterals. Further exploration of the dynamics in hepatobiliary modeling using this model might help to better understand the underlying mechanism.

18.
20.
J Pathol Inform ; 13: 100001, 2022.
Article in English | MEDLINE | ID: mdl-35242441

ABSTRACT

Many physiological processes and pathological phenomena in the liver tissue are spatially heterogeneous. At a local scale, biomarkers can be quantified along the axis of the blood flow, from portal fields (PFs) to central veins (CVs), i.e., in zonated form. This requires detecting PFs and CVs. However, manually annotating these structures in multiple whole-slide images is a tedious task. We describe and evaluate a fully automated method, based on a convolutional neural network, for simultaneously detecting PFs and CVs in a single stained section. Trained on scans of hematoxylin and eosin-stained liver tissue, the detector performed well with an F1 score of 0.81 compared to annotation by a human expert. It does, however, not generalize well to previously unseen scans of steatotic liver tissue with an F1 score of 0.59. Automated PF and CV detection eliminates the bottleneck of manual annotation for subsequent automated analyses, as illustrated by two proof-of-concept applications: We computed lobulus sizes based on the detected PF and CV positions, where results agreed with published lobulus sizes. Moreover, we demonstrate the feasibility of zonated quantification of biomarkers detected in different stainings based on lobuli and zones obtained from the detected PF and CV positions. A negative control (hematoxylin and eosin) showed the expected homogeneity, a positive control (glutamine synthetase) was quantified to be strictly pericentral, and a plausible zonation for a heterogeneous F4/80 staining was obtained. Automated detection of PFs and CVs is one building block for automatically quantifying physiologically relevant heterogeneity of liver tissue biomarkers. Perspectively, a more robust and automated assessment of zonation from whole-slide images will be valuable for parameterizing spatially resolved models of liver metabolism and to provide diagnostic information.

SELECTION OF CITATIONS
SEARCH DETAIL
...