Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 20(12): e2307178, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37950402

ABSTRACT

This work reports the rational design and fabrication of magneto-active microfiber meshes with controlled hexagonal microstructures via melt electrowriting (MEW) of a magnetized polycaprolactone-based composite. In situ iron oxide nanoparticle deposition on oxidized graphene yields homogeneously dispersed magnetic particles with sizes above 0.5 µm and low aspect ratio, preventing cellular internalization and toxicity. With these fillers, homogeneous magnetic composites with high magnetic content (up to 20 weight %) are obtained and processed in a solvent-free manner for the first time. MEW of magnetic composites enabled the creation of skeletal muscle-inspired design of hexagonal scaffolds with tunable fiber diameter, reconfigurable modularity, and zonal distribution of magneto-active and nonactive material, with elastic tensile deformability. External magnetic fields below 300 mT are sufficient to trigger out-of-plane reversible deformation. In vitro culture of C2C12 myoblasts on three-dimensional (3D) Matrigel/collagen/MEW scaffolds showed that microfibers guided the formation of 3D myotube architectures, and the presence of magnetic particles does not significantly affect viability or differentiation rates after 8 days. Centimeter-sized skeletal muscle constructs allowed for reversible, continued, and dynamic magneto-mechanical stimulation. Overall, these innovative microfiber scaffolds provide magnetically deformable platforms suitable for dynamic culture of skeletal muscle, offering potential for in vitro disease modeling.


Subject(s)
Tissue Engineering , Tissue Scaffolds , Tissue Scaffolds/chemistry , Tissue Engineering/methods , Muscle, Skeletal , Printing, Three-Dimensional
2.
Adv Biosyst ; 4(10): e2000077, 2020 10.
Article in English | MEDLINE | ID: mdl-32875734

ABSTRACT

The development of in vitro assays for 3D microenvironments is essential for understanding cell migration processes. A 3D-printed in vitro competitive radial device is developed to identify preferred Matrigel concentration for glioblastoma migration. Melt electrowriting (MEW) is used to fabricate the structural device with defined and intricate radial structures that are filled with Matrigel. Controlling the printing path is necessary to account for the distance lag in the molten jet, the applied electric field, and the continuous direct-writing nature of MEW. Circular printing below a diameter threshold results in substantial inward tilting of the MEW fiber wall. An eight-chamber radial device with a diameter of 9.4 mm is printed. Four different concentrations of Matrigel are dispensed into the radial chambers. Glioblastoma cells are seeded into the center and grow into all chambers within 8 days. The cell spreading area demonstrates that 6 and 8 mg mL-1 of Matrigel are preferred over 2 and 4 mg mL-1 . Furthermore, topographical cues via the MEW fiber wall are observed to promote migration even further away from the cell seeding depot. Previous studies implement MEW to fabricate cell invasive scaffolds whereas here it is applied to 3D-print in vitro tools to study cell migration.


Subject(s)
Cell Culture Techniques , Cell Movement/physiology , Cell Proliferation/physiology , Electrowetting , Cell Culture Techniques/instrumentation , Cell Culture Techniques/methods , Cell Line, Tumor , Collagen/chemistry , Drug Combinations , Electrowetting/instrumentation , Electrowetting/methods , Equipment Design , Glioblastoma/metabolism , Humans , Laminin/chemistry , Printing, Three-Dimensional , Proteoglycans/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...