Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Biosens Bioelectron ; 262: 116548, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38986250

ABSTRACT

An effective strategy for accurately detecting single nucleotide variants (SNVs) is of great significance for genetic research and diagnostics. However, strict amplification conditions, complex experimental instruments, and specialized personnel are required to obtain a satisfactory tradeoff between sensitivity and selectivity for SNV discrimination. In this study, we present a CRISPR-based transistor biosensor for the rapid and highly selective detection of SNVs in viral RNA. By introducing a synthetic mismatch in the crRNA, the CRISPR-Cas13a protein can be engineered to capture the target SNV RNA directly on the surface of the graphene channel. This process induces a fast electrical signal response in the transistor, obviating the need for amplification or reporter molecules. The biosensor exhibits a detection limit for target RNA as low as 5 copies in 100 µL, which is comparable to that of real-time quantitative polymerase chain reaction (PCR). Its operational range spans from 10 to 5 × 105 copy mL-1 in artificial saliva solution. This capability enables the biosensor to discriminate between wild-type and SNV RNA within 15 min. By introducing 10 µL of swab samples during clinical testing, the biosensor provides specific detection of respiratory viruses in 19 oropharyngeal specimens, including influenza A, influenza B, and variants of SARS-CoV-2. This study emphasizes the CRISPR-transistor technique as a highly accurate and sensitive approach for field-deployable nucleic acid screening or diagnostics.

2.
Anal Chem ; 96(21): 8300-8307, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38747393

ABSTRACT

An antibody transistor is a promising biosensing platform for the diagnosis and monitoring of various diseases. Nevertheless, the low concentration and short half-life of biomarkers require biodetection at the trace-molecule level, which remains a challenge for existing antibody transistors. Herein, we demonstrate a graphene field-effect transistor (gFET) with electrically oriented antibody probes (EOA-gFET) for monitoring several copies of methylated DNA. The electric field confines the orientation of antibody probes on graphene and diminishes the distance between graphene and methylated DNAs captured by antibodies, generating more induced charges on graphene and amplifying the electric signal. EOA-gFET realizes a limit of detection (LoD) of ∼0.12 copy µL-1, reaching the lowest LoD reported before. EOA-gFET shows a distinguishable signal for liver cancer clinical serum samples within ∼6 min, which proves its potential as a powerful tool for disease screening and diagnosis.


Subject(s)
Antibodies , Biosensing Techniques , DNA Methylation , Graphite , Transistors, Electronic , Humans , Graphite/chemistry , Antibodies/immunology , Antibodies/chemistry , DNA/chemistry , Limit of Detection , Liver Neoplasms/diagnosis , Liver Neoplasms/blood
3.
Adv Mater ; 36(15): e2312540, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38288781

ABSTRACT

On-site diagnostic tests that accurately identify disease biomarkers lay the foundation for self-healthcare applications. However, these tests routinely rely on single-mode signals and suffer from insufficient accuracy, especially for multiplexed point-of-care tests (POCTs) within a few minutes. Here, this work develops a dual-mode multiclassification diagnostic platform that integrates an electrochemiluminescence sensor and a field-effect transistor sensor in a microfluidic chip. The microfluidic channel guides the testing samples to flow across electro-optical sensor units, which produce dual-mode readouts by detecting infectious biomarkers of tuberculosis (TB), human rhinovirus (HRV), and group B streptococcus (GBS). Then, machine-learning classifiers generate three-dimensional (3D) hyperplanes to diagnose different diseases. Dual-mode readouts derived from distinct mechanisms enhance the anti-interference ability physically, and machine-learning-aided diagnosis in high-dimensional space reduces the occasional inaccuracy mathematically. Clinical validation studies with 501 unprocessed samples indicate that the platform has an accuracy approaching 99%, higher than the 77%-93% accuracy of rapid point-of-care testing technologies at 100% statistical power (>150 clinical tests). Moreover, the diagnosis time is 5 min without a trade-off of accuracy. This work solves the occasional inaccuracy issue of rapid on-site diagnosis, endowing POCT systems with the same accuracy as laboratory tests and holding unique prospects for complicated scenes of personalized healthcare.


Subject(s)
Point-of-Care Systems , Point-of-Care Testing , Humans , Microfluidics , Biomarkers
4.
Adv Sci (Weinh) ; 11(6): e2307840, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38070186

ABSTRACT

Early diagnosis of acute diseases is restricted by the sensitivity and complex process of sample treatment. Here, an ultrasensitive, rapid, and portable electrochemiluminescence-microfluidic (ECL-M) system is described via sandwich-type immunoassay and surface plasmonic resonance (SPR) assay. Using a sandwich immunoreaction approach, the ECL-M system employs cardiac troponin-I antigen (cTnI) as a detection model with a Ru@SiO2 NPs labeled antibody as the signal probe. For miR-499-5p detection, gold nanoparticles generate SPR effects to enhance Ru(bpy)3 2+ ECL signals. The system based on alternating current (AC) electroosmotic flow achieves an LOD of 2 fg mL-1 for cTnI in 5 min and 10 aM for miRNAs in 10 min at room temperature. The point-of-care testing (POCT) device demonstrated 100% sensitivity and 98% specificity for cTnI detection in 123 clinical serum samples. For miR-499-5p, it exhibited 100% sensitivity and 97% specificity in 55 clinical serum samples. Continuous monitoring of these biomarkers in rats' saliva, urine, and interstitial fluid samples for 48 hours revealed observations rarely documented in biotic fluids. The ECL-M POCT device stands as a top-performing system for ECL analysis, offering immense potential for ultrasensitive, rapid, highly accurate, and facile detection and monitoring of acute diseases in POC settings.


Subject(s)
Metal Nanoparticles , MicroRNAs , Rats , Animals , Electroosmosis , Gold , Silicon Dioxide , Acute Disease , Microfluidics , Electrochemical Techniques , Luminescent Measurements
5.
Adv Mater ; 36(5): e2307366, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37805919

ABSTRACT

"Test-and-go" single-nucleotide variation (SNV) detection within several minutes remains challenging, especially in low-abundance samples, since existing methods face a trade-off between sensitivity and testing speed. Sensitive detection usually relies on complex and time-consuming nucleic acid amplification or sequencing. Here, a graphene field-effect transistor (GFET) platform mediated by Argonaute protein that enables rapid, sensitive, and specific SNV detection is developed. The Argonaute protein provides a nanoscale binding channel to preorganize the DNA probe, accelerating target binding and rapidly recognizing SNVs with single-nucleotide resolution in unamplified tumor-associated microRNA, circulating tumor DNA, virus RNA, and reverse transcribed cDNA when a mismatch occurs in the seed region. An integrated microchip simultaneously detects multiple SNVs in agreement with sequencing results within 5 min, achieving the fastest SNV detection in a "test-and-go" manner without the requirement of nucleic acid extraction, reverse transcription, and amplification.


Subject(s)
Biosensing Techniques , MicroRNAs , Nucleotides , Argonaute Proteins , DNA/genetics , MicroRNAs/genetics , DNA Probes
6.
Anal Chem ; 95(35): 13281-13288, 2023 09 05.
Article in English | MEDLINE | ID: mdl-37610301

ABSTRACT

MicroRNAs (miRNAs) have emerged as powerful biomarkers for disease diagnosis and screening. Traditional miRNA analytical techniques are inadequate for point-of-care testing due to their reliance on specialized expertise and instruments. Graphene field-effect transistors (GFETs) offer the prospect of simple and label-free diagnostics. Herein, a GFET biosensor based on tetrahedral DNA nanostructure (TDN)-assisted catalytic hairpin assembly (CHA) reaction (TCHA) has been fabricated and applied to the sensitive and specific detection of miRNA-21. TDN structures are assembled to construct the biosensing interface, facilitating CHA reaction by providing free space and preventing unwanted entanglements, aggregation, and adsorption of probes on the graphene channel. Owing to synergistic effects of TDN-assisted in situ nucleic acid amplification on the sensing surface, as well as inherent signal sensitization of GFETs, the biosensor exhibits ultrasensitive detection of miRNA-21 down to 5.67 × 10-19 M, approximately three orders of magnitude lower than that normally achieved by graphene transistors with channel functionalization of single-stranded DNA probes. In addition, the biosensor demonstrates excellent analytical performance regarding selectivity, stability, and reproducibility. Furthermore, the practicability of the biosensor is verified by analyzing targets in a complex serum environment and cell lysates, showing tremendous potential in bioanalysis and clinical diagnosis.


Subject(s)
Graphite , MicroRNAs , Reproducibility of Results , Adsorption , Catalysis
7.
Nat Protoc ; 18(7): 2313-2348, 2023 07.
Article in English | MEDLINE | ID: mdl-37208410

ABSTRACT

Biological research and diagnostic applications normally require analysis of trace analytes in biofluids. Although considerable advancements have been made in developing precise molecular assays, the trade-off between sensitivity and ability to resist non-specific adsorption remains a challenge. Here, we describe the implementation of a testing platform based on a molecular-electromechanical system (MolEMS) immobilized on graphene field-effect transistors. A MolEMS is a self-assembled DNA nanostructure, containing a stiff tetrahedral base and a flexible single-stranded DNA cantilever. Electromechanical actuation of the cantilever modulates sensing events close to the transistor channel, improving signal-transduction efficiency, while the stiff base prevents non-specific adsorption of background molecules present in biofluids. A MolEMS realizes unamplified detection of proteins, ions, small molecules and nucleic acids within minutes and has a limit of detection of several copies in 100 µl of testing solution, offering an assay methodology with wide-ranging applications. In this protocol, we provide step-by-step procedures for MolEMS design and assemblage, sensor manufacture and operation of a MolEMS in several applications. We also describe adaptations to construct a portable detection platform. It takes ~18 h to construct the device and ~4 min to finish the testing from sample addition to result.


Subject(s)
Biosensing Techniques , Graphite , Nucleic Acids , Biosensing Techniques/methods , DNA/analysis , DNA, Single-Stranded , Proteins , Graphite/chemistry
8.
J Am Chem Soc ; 145(18): 10035-10044, 2023 05 10.
Article in English | MEDLINE | ID: mdl-37097713

ABSTRACT

Compared with traditional assay techniques, field-effect transistors (FETs) have advantages such as fast response, high sensitivity, being label-free, and point-of-care detection, while lacking generality to detect a wide range of small molecules since most of them are electrically neutral with a weak doping effect. Here, we demonstrate a photo-enhanced chemo-transistor platform based on a synergistic photo-chemical gating effect in order to overcome the aforementioned limitation. Under light irradiation, accumulated photoelectrons generated from covalent organic frameworks offer a photo-gating modulation, amplifying the response to small molecule adsorption including methylglyoxal, p-nitroaniline, nitrobenzene, aniline, and glyoxal when measuring the photocurrent. We perform testing in buffer, artificial urine, sweat, saliva, and diabetic mouse serum. The limit of detection is down to 10-19 M methylglyoxal, about 5 orders of magnitude lower than existing assay technologies. This work develops a photo-enhanced FET platform to detect small molecules or other neutral species with enhanced sensitivity for applications in fields such as biochemical research, health monitoring, and disease diagnosis.


Subject(s)
Biosensing Techniques , Body Fluids , Animals , Mice , Biosensing Techniques/methods , Pyruvaldehyde , Saliva , Transistors, Electronic
9.
Anal Chem ; 95(2): 1446-1453, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36577081

ABSTRACT

An aptamer-based field-effect transistor (Apta-FET) is a well-developed assay method with high selectivity and sensitivity. Due to the limited information density that natural nucleotide library holds, the Apta-FET faces fundamental restriction in universality to detect various types of analytes. Herein, we demonstrate a type of Apta-FET sensors based on an artificial nucleotide aptamer (AN-Apta-FET). The introduction of an artificial nucleotide increases the diversity of the potential aptamer structure and expands the analyte category of the Apta-FET. The AN-Apta-FET specifically detects hepatoma exosomes, which traditional Apta-FET fails to discriminate from other tumor-derived exosomes, with a limit of detection down to 242 particles mL-1. The AN-Apta-FET distinguishes serum samples of hepatocellular carcinoma patients within 9 min from those of healthy people, showing the potential as a comprehensive assay tool in future disease diagnosis.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Carcinoma, Hepatocellular , Exosomes , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/diagnosis , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Liver Neoplasms/diagnosis
10.
Sensors (Basel) ; 22(18)2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36146305

ABSTRACT

Field-effect transistor (FET) sensors require not only high sensitivity but also excellent regeneration ability before widespread applications are possible. Although some regenerative FETs have been reported, their lowest limit of detection (LoD) barely achieves 10-15 mol L-1. Here, we develop a graphene FET with a regenerative sensing interface based on dynamic covalent chemistry (DCvC). The LoD down to 5.0 × 10-20 mol L-1 remains even after 10 regenerative cycles, around 4-5 orders of magnitude lower than existing transistor sensors. Owing to its ultra-sensitivity, regeneration ability, and advantages such as simplicity, low cost, label-free and real-time response, the FET sensor based on DCvC is valuable in applications such as medical diagnosis, environment monitoring, etc.


Subject(s)
Biosensing Techniques , Graphite , Limit of Detection , Transistors, Electronic
11.
J Am Chem Soc ; 144(30): 13526-13537, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35858825

ABSTRACT

The existing electrochemical biosensors lack controllable and intelligent merit to modulate the sensing process upon external stimulus, leading to challenges in analyzing a few copies of biomarkers in unamplified samples. Here, we present a self-actuated molecular-electrochemical system that consists of a tentacle and a trunk modification on a graphene microelectrode. The tentacle that contains a probe and an electrochemical label keeps an upright orientation, which increases recognition efficiency while decreasing the pseudosignal. Once the nucleic acids are recognized, the tentacles nearby along with the labels are spontaneously actuated downward, generating electrochemical responses under square wave voltammetry. Thus, it detects unamplified SARS-CoV-2 RNAs within 1 min down to 4 copies in 80 µL, 2-6 orders of magnitude lower than those of other electrochemical assays. Double-blind testing and 10-in-1 pooled testing of nasopharyngeal samples yield high overall agreement with reverse transcription-polymerase chain reaction results. We fabricate a portable prototype based on this system, showing great potential for future applications.


Subject(s)
Biosensing Techniques , COVID-19 , Nucleic Acids , Biosensing Techniques/methods , COVID-19/diagnosis , Double-Blind Method , Humans , Nasopharynx , SARS-CoV-2/genetics
12.
Nano Lett ; 22(8): 3307-3316, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35426688

ABSTRACT

Accurate and population-scale screening technology is crucial in the control and prevention of COVID-19, such as pooled testing with high overall testing efficiency. Nevertheless, pooled testing faces challenges in sensitivity and specificity due to diluted targets and increased contaminations. Here, we develop a graphene field-effect transistor sensor modified with triple-probe tetrahedral DNA framework (TDF) dimers for 10-in-1 pooled testing of SARS-CoV-2 RNA. The synergy effect of triple probes as well as the special nanostructure achieve a higher binding affinity, faster response, and better specificity. The detectable concentration reaches 0.025-0.05 copy µL-1 in unamplified samples, lower than that of the reverse transcript-polymerase chain reaction. Without a requirement of nucleic-acid amplification, the sensors identify all of the 14 positive cases in 30 nasopharyngeal swabs within an average diagnosis time of 74 s. Unamplified 10-in-1 pooled testing enabled by the triple-probe TDF dimer sensor has great potential in the screening of COVID-19 and other epidemic diseases.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Testing , DNA , DNA Probes , Humans , RNA, Viral/genetics , SARS-CoV-2/genetics , Sensitivity and Specificity
13.
Chem Rev ; 122(11): 10319-10392, 2022 06 08.
Article in English | MEDLINE | ID: mdl-35412802

ABSTRACT

The evolutionary success in information technology has been sustained by the rapid growth of sensor technology. Recently, advances in sensor technology have promoted the ambitious requirement to build intelligent systems that can be controlled by external stimuli along with independent operation, adaptivity, and low energy expenditure. Among various sensing techniques, field-effect transistors (FETs) with channels made of two-dimensional (2D) materials attract increasing attention for advantages such as label-free detection, fast response, easy operation, and capability of integration. With atomic thickness, 2D materials restrict the carrier flow within the material surface and expose it directly to the external environment, leading to efficient signal acquisition and conversion. This review summarizes the latest advances of 2D-materials-based FET (2D FET) sensors in a comprehensive manner that contains the material, operating principles, fabrication technologies, proof-of-concept applications, and prototypes. First, a brief description of the background and fundamentals is provided. The subsequent contents summarize physical, chemical, and biological 2D FET sensors and their applications. Then, we highlight the challenges of their commercialization and discuss corresponding solution techniques. The following section presents a systematic survey of recent progress in developing commercial prototypes. Lastly, we summarize the long-standing efforts and prospective future development of 2D FET-based sensing systems toward commercialization.


Subject(s)
Biosensing Techniques , Transistors, Electronic , Biosensing Techniques/methods , Prospective Studies
14.
Nat Biomed Eng ; 6(3): 276-285, 2022 03.
Article in English | MEDLINE | ID: mdl-35132229

ABSTRACT

The detection of samples at ultralow concentrations (one to ten copies in 100 µl) in biofluids is hampered by the orders-of-magnitude higher amounts of 'background' biomolecules. Here we report a molecular system, immobilized on a liquid-gated graphene field-effect transistor and consisting of an aptamer probe bound to a flexible single-stranded DNA cantilever linked to a self-assembled stiff tetrahedral double-stranded DNA structure, for the rapid and ultrasensitive electromechanical detection (down to one to two copies in 100 µl) of unamplified nucleic acids in biofluids, and also of ions, small molecules and proteins, as we show for Hg2+, adenosine 5'-triphosphate and thrombin. We implemented an electromechanical biosensor for the detection of SARS-CoV-2 into an integrated and portable prototype device, and show that it detected SARS-CoV-2 RNA in less than four minutes in all nasopharyngeal samples from 33 patients with COVID-19 (with cycle threshold values of 24.9-41.3) and in none of the 54 COVID-19-negative controls, without the need for RNA extraction or nucleic acid amplification.


Subject(s)
COVID-19 , Graphite , COVID-19/diagnosis , Humans , Ions , RNA, Viral/genetics , SARS-CoV-2/genetics
15.
Org Lett ; 24(1): 6-10, 2022 01 14.
Article in English | MEDLINE | ID: mdl-34932362

ABSTRACT

Catalytic glycosylations with glycosyl fluorides using BF3·Et2O are presented. Glycosylations with both armed and disarmed donors were efficiently catalyzed by 1 mol% of BF3·Et2O in a nitrogen-filled glovebox without the use of dehydrating agents. Our finding is in sharp contrast with conventional BF3·Et2O-mediated glycosylations, where excess Lewis acid and additives are required. Mechanistic studies indicated that the chemical species formed by the reaction of in situ generated HF and glass vessels are involved in the catalytic cycle.

16.
Nano Lett ; 21(22): 9450-9457, 2021 11 24.
Article in English | MEDLINE | ID: mdl-34734737

ABSTRACT

Direct SARS-CoV-2 nucleic acid testing with fast speed and high frequency is crucial for controlling the COVID-19 pandemic. Here, direct testing of SARS-CoV-2 nucleic acid is realized by field-effect transistors (FETs) with an electro-enrichable liquid gate (LG) anchored by tetrahedral DNA nanostructures (TDNs). The applied gate bias electrostatically preconcentrates nucleic acids, while the liquid gate with TDNs provides efficient analyte recognition and signal transduction. The average diagnosis time is ∼80 s, and the limit of detection approaches 1-2 copies in 100 µL of clinical samples without nucleic acid extraction and amplification. As such, TDN-LG FETs solve the dilemma of COVID-19 testing on mass scale that diagnosis accuracy and speed undergo trade-off. In addition, TDN-LG FETs achieve unamplified 10-in-1 pooled nucleic acid testing for the first time, and the results are consistent with PCR. Thus, this technology promises on-site and wide population COVID-19 screening and ensures safe world-reopening.


Subject(s)
COVID-19 , Nanostructures , Nucleic Acids , COVID-19 Testing , DNA/genetics , Humans , Pandemics , SARS-CoV-2 , Sensitivity and Specificity
17.
J Am Chem Soc ; 143(47): 19794-19801, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34792340

ABSTRACT

Effective screening of infectious diseases requires a fast, cheap, and population-scale testing. Antigen pool testing can increase the test rate and shorten the screening time, thus being a valuable approach for epidemic prevention and control. However, the overall percent agreement (OPA) with polymerase chain reaction (PCR) is one-half to three-quarters, hampering it from being a comprehensive method, especially pool testing, beyond the gold-standard PCR. Here, a multiantibodies transistor assay is developed for sensitive and highly precise antigen pool testing. The multiantibodies capture SARS-CoV-2 spike S1 proteins with different configurations, resulting in an antigen-binding affinity down to 0.34 fM. The limit of detection reaches 3.5 × 10-17 g mL-1SARS-CoV-2 spike S1 protein in artificial saliva, 4-5 orders of magnitude lower than existing transistor sensors. The testing of 60 nasopharyngeal swabs exhibits ∼100% OPA with PCR within an average diagnoses time of 38.9 s. Owing to its highly precise feature, a portable integrated platform is fabricated, which achieves 10-in-1 pooled screening for high testing throughput. This work solves the long-standing problem of antigen pool testing, enabling it to be a valuable tool in precise diagnoses and population-wide screening of COVID-19 or other epidemics in the future.


Subject(s)
Antibodies/immunology , Immunoassay/methods , Spike Glycoprotein, Coronavirus/immunology , Transistors, Electronic , COVID-19/diagnosis , COVID-19/virology , Immunoassay/instrumentation , Limit of Detection , Nasopharynx/virology , Polymerase Chain Reaction , Protein Subunits/genetics , Protein Subunits/immunology , Protein Subunits/metabolism , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Saliva/virology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
18.
J Am Chem Soc ; 143(41): 17004-17014, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34623792

ABSTRACT

Rapid screening of infected individuals from a large population is an effective means in epidemiology, especially to contain outbreaks such as COVID-19. The gold standard assays for COVID-19 diagnostics are mainly based on the reverse transcription polymerase chain reaction, which mismatches the requirements for wide-population screening due to time-consuming nucleic acid extraction and amplification procedures. Here, we report a direct nucleic acid assay by using a graphene field-effect transistor (g-FET) with Y-shaped DNA dual probes (Y-dual probes). The assay relies on Y-dual probes modified on g-FET simultaneously targeting ORF1ab and N genes of SARS-CoV-2 nucleic acid, enabling high a recognition ratio and a limit of detection (0.03 copy µL-1) 1-2 orders of magnitude lower than existing nucleic acid assays. The assay realizes the fastest nucleic acid testing (∼1 min) and achieves direct 5-in-1 pooled testing for the first time. Owing to its rapid, ultrasensitive, easily operated features as well as capability in pooled testing, it holds great promise as a comprehensive tool for population-wide screening of COVID-19 and other epidemics.


Subject(s)
DNA Probes , DNA, Viral/analysis , Nucleic Acid Amplification Techniques/methods , SARS-CoV-2/genetics , COVID-19/diagnosis , COVID-19/virology , Graphite/chemistry , Humans , Limit of Detection
19.
Nano Lett ; 21(19): 7897-7904, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34581586

ABSTRACT

The fast spread of SARS-CoV-2 has severely threatened the public health. Establishing a sensitive method for SARS-CoV-2 detection is of great significance to contain the worldwide pandemic. Here, we develop a graphene field-effect transistor (g-FET) biosensor and realize ultrasensitive SARS-CoV-2 antibody detection with a limit of detection (LoD) down to 10-18 M (equivalent to 10-16 g mL-1) level. The g-FETs are modified with spike S1 proteins, and the SARS-CoV-2 antibody biorecognition events occur in the vicinity of the graphene surface, yielding an LoD of ∼150 antibodies in 100 µL full serum, which is the lowest LoD value of antibody detection. The diagnoses time is down to 2 min for detecting clinical serum samples. As such, the g-FETs leverage rapid and precise SARS-CoV-2 screening and also hold great promise in prevention and control of other epidemic outbreaks in the future.


Subject(s)
Biosensing Techniques , COVID-19 , Graphite , Humans , Limit of Detection , SARS-CoV-2
20.
RSC Adv ; 9(20): 11305-11311, 2019 Apr 09.
Article in English | MEDLINE | ID: mdl-35520234

ABSTRACT

Bionic design is efficient to develop high-performance lightweight refractories with sophisticated structures such as hollow ceramic fibers. Here, we report a four-stage procedure for the preparation of Al2O3-ZrO2(Y2O3) hollow fibers using the template of cogon-a natural grass. Subsequently, to optimize the thermal performance of the fibers, four sets of preparation parameters, namely, x(Al2O3), solute mass ratio of the mixture, dry temperature, and sintering temperature were investigated. Through an orthogonal design, the optimal condition of each parameter was obtained as follows: x(Al2O3) was 0.70, solute mass ratio of the mixture was 15 wt%, dry temperature was 80 °C, and sintering temperature was 1100 °C. Overall, Al2O3-ZrO2(Y2O3) hollow fibers show relatively low thermal conductivity (0.1038 W m-1 K-1 at 1000 °C), high porosity (95.0%), and low density (0.05-0.10 g cm-3). The multiphase compositions and morphology of Al2O3-ZrO2(Y2O3) hollow fibers, which may contribute to their thermal properties, were also discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...