Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 186
Filter
1.
Eur J Med Res ; 29(1): 271, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711117

ABSTRACT

Dexmedetomidine (Dex) has been used in surgery to improve patients' postoperative cognitive function. However, the role of Dex in stress-induced anxiety-like behaviors and cognitive impairment is still unclear. In this study, we tested the role of Dex in anxiety-like behavior and cognitive impairment induced by acute restrictive stress and analyzed the alterations of the intestinal flora to explore the possible mechanism. Behavioral and cognitive tests, including open field test, elevated plus-maze test, novel object recognition test, and Barnes maze test, were performed. Intestinal gut Microbe 16S rRNA sequencing was analyzed. We found that intraperitoneal injection of Dex significantly improved acute restrictive stress-induced anxiety-like behavior, recognition, and memory impairment. After habituation in the environment, mice (male, 8 weeks, 18-23 g) were randomly divided into a control group (control, N = 10), dexmedetomidine group (Dex, N = 10), AS with normal saline group (AS + NS, N = 10) and AS with dexmedetomidine group (AS + Dex, N = 10). By the analysis of intestinal flora, we found that acute stress caused intestinal flora disorder in mice. Dex intervention changed the composition of the intestinal flora of acute stress mice, stabilized the ecology of the intestinal flora, and significantly increased the levels of Blautia (A genus of anaerobic bacteria) and Coprobacillus. These findings suggest that Dex attenuates acute stress-impaired learning and memory in mice by maintaining the homeostasis of intestinal flora.


Subject(s)
Dexmedetomidine , Gastrointestinal Microbiome , Homeostasis , Stress, Psychological , Animals , Dexmedetomidine/pharmacology , Gastrointestinal Microbiome/drug effects , Mice , Male , Homeostasis/drug effects , Stress, Psychological/complications , Stress, Psychological/drug therapy , Memory/drug effects , Memory Disorders/drug therapy , Maze Learning/drug effects , Anxiety/drug therapy
2.
BMC Med Imaging ; 24(1): 126, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807064

ABSTRACT

BACKGROUND: Automated Breast Ultrasound (AB US) has shown good application value and prospects in breast disease screening and diagnosis. The aim of the study was to explore the ability of AB US to detect and diagnose mammographically Breast Imaging Reporting and Data System (BI-RADS) category 4 microcalcifications. METHODS: 575 pathologically confirmed mammographically BI-RADS category 4 microcalcifications from January 2017 to June 2021 were included. All patients also completed AB US examinations. Based on the final pathological results, analyzed and summarized the AB US image features, and compared the evaluation results with mammography, to explore the detection and diagnostic ability of AB US for these suspicious microcalcifications. RESULTS: 250 were finally confirmed as malignant and 325 were benign. Mammographic findings including microcalcifications morphology (61/80 with amorphous, coarse heterogeneous and fine pleomorphic, 13/14 with fine-linear or branching), calcification distribution (189/346 with grouped, 40/67 with linear and segmental), associated features (70/96 with asymmetric shadow), higher BI-RADS category with 4B (88/120) and 4 C (73/38) showed higher incidence in malignant lesions, and were the independent factors associated with malignant microcalcifications. 477 (477/575, 83.0%) microcalcifications were detected by AB US, including 223 malignant and 254 benign, with a significantly higher detection rate for malignant lesions (x2 = 12.20, P < 0.001). Logistic regression analysis showed microcalcifications with architectural distortion (odds ratio [OR] = 0.30, P = 0.014), with amorphous, coarse heterogeneous and fine pleomorphic morphology (OR = 3.15, P = 0.037), grouped (OR = 1.90, P = 0.017), liner and segmental distribution (OR = 8.93, P = 0.004) were the independent factors which could affect the detectability of AB US for microcalcifications. In AB US, malignant calcification was more frequent in a mass (104/154) or intraductal (20/32), and with ductal changes (30/41) or architectural distortion (58/68), especially with the both (12/12). BI-RADS category results also showed that AB US had higher sensitivity to malignant calcification than mammography (64.8% vs. 46.8%). CONCLUSIONS: AB US has good detectability for mammographically BI-RADS category 4 microcalcifications, especially for malignant lesions. Malignant calcification is more common in a mass and intraductal in AB US, and tend to associated with architectural distortion or duct changes. Also, AB US has higher sensitivity than mammography to malignant microcalcification, which is expected to become an effective supplementary examination method for breast microcalcifications, especially in dense breasts.


Subject(s)
Breast Neoplasms , Calcinosis , Ultrasonography, Mammary , Humans , Calcinosis/diagnostic imaging , Female , Retrospective Studies , Middle Aged , Ultrasonography, Mammary/methods , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Adult , Aged , Mammography/methods , Aged, 80 and over
3.
Biomed Pharmacother ; 175: 116682, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703507

ABSTRACT

The interaction between endoplasmic reticulum (ER) and mitochondria has been shown to play a key role in hepatic steatosis during chronic obesity. ß-nicotinamide mononucleotide (NMN) has been reported to regulate obesity, however, its molecular mechanism at the subcellular level remains unclear. Here, NMN improved liver steatosis and insulin resistance in chronic high-fat diet (HFD) mice. RNA-seq showed that compared with the liver of HFD mice, NMN intervention enhanced fat digestion and absorption and stimulated the cholesterol metabolism signaling pathways, while impaired insulin resistance and the fatty acid biosynthesis signaling pathways. Mechanistically, NMN ameliorated mitochondrial dysfunction and ER oxidative stress in the liver of HFD mice by increasing hepatic nicotinamide adenine dinucleotide (NAD+) (P < 0.01) levels. This effect increased the contact sites (mitochondria-associated membranes [MAMs]) between ER and mitochondria, thereby promoting intracellular ATP (P < 0.05) production and mitigating lipid metabolic disturbances in the liver of HFD mice. Taken together, this study provided a theoretical basis for restoring metabolic dynamic equilibrium in the liver of HFD mice by increasing MAMs via the nutritional strategy of NMN supplementation.


Subject(s)
Diet, High-Fat , Endoplasmic Reticulum , Fatty Liver , Insulin Resistance , Liver , Mice, Inbred C57BL , Nicotinamide Mononucleotide , Animals , Insulin Resistance/physiology , Diet, High-Fat/adverse effects , Endoplasmic Reticulum/metabolism , Male , Mice , Liver/metabolism , Liver/pathology , Liver/drug effects , Nicotinamide Mononucleotide/pharmacology , Fatty Liver/metabolism , Lipid Metabolism/drug effects , Mitochondria/metabolism , Mitochondria/drug effects , Oxidative Stress/drug effects , Mitochondria, Liver/metabolism , Mitochondria, Liver/drug effects , Endoplasmic Reticulum Stress/drug effects , Signal Transduction
4.
Apoptosis ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38622369

ABSTRACT

The high heterogeneity of breast cancer (BC) caused by pathogenic gene mutations poses a challenge to immunotherapy, but the underlying mechanism remains unknown. The difference in the infiltration of M1 macrophages induced by TP53 mutations has a significant impact on BC immunotherapy. The aim of this study was to develop a TP53-related M1 macrophage infiltration molecular typing risk signature in BC and evaluate the biological functions of the key gene to find new immunotherapy biomarkers. Weighted correlation network analysis (WGCNA) and negative matrix factorization (NMF) were used for distinguishing BC subtypes. The signature and the nomogram were both constructed and evaluated. Biological functions of the novel signature gene SLC2A6 were confirmed through in vitro and in vivo experiments. RNA-Sequencing and protein profiling were used for detecting the possible mechanism of SLC2A6. The results suggested that four BC subtypes were distinguished by TP53-related genes that affect M1 macrophage infiltration. The signature constructed by molecular typing characteristics could evaluate BC's clinical features and tumor microenvironment. The nomogram could accurately predict the prognosis. The signature gene SLC2A6 was found to have an abnormally low expression in tumor tissues. Overexpression of SLC2A6 could inhibit proliferation, promote mitochondrial damage, and result in apoptosis of tumor cells. The HSP70 family member protein HSPA6 could bind with SLC2A6 and increase with the increased expression of SLC2A6. In summary, the risk signature provides a reference for BC risk assessment, and the signature gene SLC2A6 could act as a tumor suppressor in BC.

5.
Environ Sci Pollut Res Int ; 31(19): 28241-28252, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38538997

ABSTRACT

In this study, boron-doped porous carbon materials (BCs) with high surface areas were synthesized employing coffee grounds as carbon source and sodium bicarbonate and boric acid as precursors; afterward, nanoscale zero-valent iron (nZVI) and BCs composites (denoted as nZVI@BCs) were further prepared through reduction of FeSO4 by NaBH4 along with stirring. The performance of the nZVI@BCs for activating persulfate (PS) was evaluated for the degradation of bisphenol A (BPA). In comparison with nZVI@Cs/PS, nZVI@BCs/PS could greatly promote the degradation and mineralization of BPA via both radical and non-radical pathways. On the one hand, electron spin resonance and radical quenching studies represented that •OH, SO4•-, and O2•- were mainly produced in the nZVI@BCs/PS system for BPA degradation. On the other hand, the open circuit voltages of nZVI@BCs and nZVI@Cs in different systems indicated that non-radical pathway still existed in our system. PS could grab the unstable unpaired electron on nZVI@BCs to form a carbon material surface-confined complex ([nZVI@BCs]*) with a high redox potential, then accelerate BPA removal efficiency via direct electron transfer. Furthermore, the performances and mechanisms for BPA degradation were examined by PS activation with nZVI@BC composites at various conditions including dosages of nZVI@BCs, BPA and PS, initially pH value, temperature, common anions, and humid acid. Therefore, this study provides a novel insight for development of high-performance carbon catalysts toward environmental remediation.


Subject(s)
Benzhydryl Compounds , Boron , Carbon , Iron , Phenols , Benzhydryl Compounds/chemistry , Iron/chemistry , Boron/chemistry , Carbon/chemistry , Phenols/chemistry , Catalysis , Porosity
6.
Circ Res ; 134(5): 505-525, 2024 03.
Article in English | MEDLINE | ID: mdl-38422177

ABSTRACT

BACKGROUND: Chronic overconsumption of lipids followed by their excessive accumulation in the heart leads to cardiomyopathy. The cause of lipid-induced cardiomyopathy involves a pivotal role for the proton-pump vacuolar-type H+-ATPase (v-ATPase), which acidifies endosomes, and for lipid-transporter CD36, which is stored in acidified endosomes. During lipid overexposure, an increased influx of lipids into cardiomyocytes is sensed by v-ATPase, which then disassembles, causing endosomal de-acidification and expulsion of stored CD36 from the endosomes toward the sarcolemma. Once at the sarcolemma, CD36 not only increases lipid uptake but also interacts with inflammatory receptor TLR4 (Toll-like receptor 4), together resulting in lipid-induced insulin resistance, inflammation, fibrosis, and cardiac dysfunction. Strategies inducing v-ATPase reassembly, that is, to achieve CD36 reinternalization, may correct these maladaptive alterations. For this, we used NAD+ (nicotinamide adenine dinucleotide)-precursor nicotinamide mononucleotide (NMN), inducing v-ATPase reassembly by stimulating glycolytic enzymes to bind to v-ATPase. METHODS: Rats/mice on cardiomyopathy-inducing high-fat diets were supplemented with NMN and for comparison with a cocktail of lysine/leucine/arginine (mTORC1 [mechanistic target of rapamycin complex 1]-mediated v-ATPase reassembly). We used the following methods: RNA sequencing, mRNA/protein expression analysis, immunofluorescence microscopy, (co)immunoprecipitation/proximity ligation assay (v-ATPase assembly), myocellular uptake of [3H]chloroquine (endosomal pH), and [14C]palmitate, targeted lipidomics, and echocardiography. To confirm the involvement of v-ATPase in the beneficial effects of both supplementations, mTORC1/v-ATPase inhibitors (rapamycin/bafilomycin A1) were administered. Additionally, 2 heart-specific v-ATPase-knockout mouse models (subunits V1G1/V0d2) were subjected to these measurements. Mechanisms were confirmed in pharmacologically/genetically manipulated cardiomyocyte models of lipid overload. RESULTS: NMN successfully preserved endosomal acidification during myocardial lipid overload by maintaining v-ATPase activity and subsequently prevented CD36-mediated lipid accumulation, CD36-TLR4 interaction toward inflammation, fibrosis, cardiac dysfunction, and whole-body insulin resistance. Lipidomics revealed C18:1-enriched diacylglycerols as lipid class prominently increased by high-fat diet and subsequently reversed/preserved by lysine/leucine/arginine/NMN treatment. Studies with mTORC1/v-ATPase inhibitors and heart-specific v-ATPase-knockout mice further confirmed the pivotal roles of v-ATPase in these beneficial actions. CONCLUSION: NMN preserves heart function during lipid overload by preventing v-ATPase disassembly.


Subject(s)
Cardiomyopathies , Insulin Resistance , Animals , Mice , Rats , Adenosine Triphosphatases , Arginine , Cardiomyopathies/chemically induced , Cardiomyopathies/prevention & control , CD36 Antigens/genetics , Fibrosis , Inflammation , Leucine , Lipids , Lysine , Mechanistic Target of Rapamycin Complex 1 , Myocytes, Cardiac , Nicotinamide Mononucleotide , Toll-Like Receptor 4/genetics
7.
Food Chem Toxicol ; 185: 114462, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38272172

ABSTRACT

Zearalenone (ZEN, a widespread fusarium mycotoxin) causes evoked oxidative stress in reproductive system, but little is known about whether this is involved in ferroptosis. Melatonin, a well-known antioxidant, has demonstrated unique anti-antioxidant properties in several studies. Here, this study was aimed to investigate whether ZEN-induced oxidative stress in female pig's reproductive system was involved in ferroptosis, and melatonin was then supplemented to protect against ZEN-induced abnormalities in vitro cell models [human granulosa cell (KGN) and mouse endometrial stromal cell (mEC)] and in vivo mouse model. According to the results from female pig's reproductive organs, ZEN-induced abnormalities in vulvar swelling, inflammatory invasion and pathological mitochondria, were closely linked with evoked oxidative stress. Using RNA-seq analysis, we further revealed that ZEN-induced reproductive toxicity was due to activated ferroptosis. Mechanistically, by using in vitro cell models (KGN and mEC) and in vivo mouse model, we observed that ZEN exposure resulted in oxidative stress and ferroptosis in a glutathione-dependent manner. Notably, these ZEN-induced abnormalities above were alleviated by melatonin supplementation through enhanced productions of glutathione peroxidase 4 and glutathione. Herein, the present results suggest that potential strategies to improve glutathione production protect against ZEN-induced reproductive toxicity, including oxidative stress and ferroptosis.


Subject(s)
Ferroptosis , Melatonin , Zearalenone , Female , Humans , Animals , Mice , Zearalenone/toxicity , Melatonin/pharmacology , Oxidative Stress , Glutathione/metabolism , Genitalia, Female
8.
Microvasc Res ; 151: 104623, 2024 01.
Article in English | MEDLINE | ID: mdl-37924941

ABSTRACT

OBJECTIVE: Type B aortic dissection (TBAD) and intramural aortic hematoma (IMH) are common manifestations of Acute Aortic Syndrome (AAS), exhibiting overlapping clinical features. The timely and accurate diagnosis and differentiation between TBAD and IMH are critical for appropriate management. Tumorigenicity 2 (sST2) and D-dimer have been shown to elevate levels in both TBAD and IMH, making them valuable as "rule-out" markers. Hence, we aimed to assess the diagnostic utility of sST2 and D-dimer in distinguishing TBAD from IMH. METHODS: In this retrospective study, we analyzed serum levels of sST2 and D-dimer in 182 AAS patients, comprising 90 TBAD cases, 92 IMH cases, and 90 non-AAS cases. Serial measurements were taken at 1 h, 6 h, 12 h, 24 h, and 72 h post-admission. Comparative analyses were conducted between TBAD and non-AAS cases, IMH and non-AAS cases, and TBAD and IMH cases. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic accuracy of sST2 and D-dimer in identifying TBAD or IMH cases. RESULTS: Both TBAD and IMH patients displayed elevated levels of sST2 and D-dimer compared to non-AAS cases. Notably, sST2 levels were significantly higher in TBAD patients than in IMH patients, whereas D-dimer levels exhibited moderate differences. TBAD patients tended to exhibit elevated levels of either sST2 or D-dimer, with a modest correlation between the two (Pearson correlation coefficient = 0.3614). In contrast, IMH patients showed elevations in both markers, with a positive correlation between them (Pearson correlation coefficient = 0.6814). The ROC analysis revealed that both sST2 (AUC, 0.657; 95 % CI, 0.552-0.753; cutoff value, 27.54 ng/ml) and D-dimer (AUC, 0.695; 95 % CI, 0.591-0.787, cutoff value, 1.215 ng/ml) demonstrated favorable diagnostic performance for TBAD. sST2 exhibited a sensitivity of 80.92 % and a specificity of 75.00 %, while D-dimer showed a sensitivity of 80.92 % and a specificity of 75.00 %. For the diagnosis of IMH, the combined assessment of sST2 and D-dimer (AUC, 0.674; 95 % CI, 0.599-0.768; sensitivity, 69.20 %; specificity, 80.00 %) proved effective. CONCLUSIONS: Our results indicate that both sST2 and D-dimer show diagnostic potential for TBAD. Elevated levels of either serve as an indicator of TBAD onset. However, concurrent elevation of both markers seems to be indicative of IMH. The combination of increased sST2 and D-dimer levels demonstrates strong diagnostic performance in identifying IMH cases.


Subject(s)
Aortic Dissection , Interleukin-1 Receptor-Like 1 Protein , Humans , Retrospective Studies , Aortic Dissection/diagnosis , Hematoma/diagnosis
9.
J Hazard Mater ; 465: 133247, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38141293

ABSTRACT

Antibiotics have attracted global attention because of their potential ecological and health risks. The emission, multimedia fate and risk of 18 selected antibiotics in the entire Yangtze River basin were evaluated by using a level Ⅳ fugacity model. High antibiotic emissions were found in the middle and lower reaches of the Yangtze River basin. The total antibiotic emissions in the Yangtze River basin exceeded 1600 tons per year between 2013 and 2021. The spatial distribution of antibiotics concentration was the upper Yangtze River > middle Yangtze River > lower Yangtze River, which is positively correlated with animal husbandry size in the basin. Temperature and precipitation increases may decrease the antibiotic concentrations in the environment. Transfer fluxes showed that source emission inputs, advection processes, and degradation fluxes contributed more to the total input and output. High ecological risks in the water environment were found in 2018, 2019, 2020, and 2021. The comprehensive health risk assessment through drinking water and fish consumption routes showed that a small part of the Yangtze River basin is at medium risk, and children have a relatively high degree of health risk. This study provides a scientific basis for the pollution control of antibiotics at the basin scale.


Subject(s)
Rivers , Water Pollutants, Chemical , Animals , Child , Humans , Anti-Bacterial Agents/analysis , Multimedia , Environmental Monitoring , China , Risk Assessment , Water Pollutants, Chemical/analysis
10.
Reprod Toxicol ; 124: 108530, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38159578

ABSTRACT

The reproductive system is a primary target organ for zearalenone (ZEN, a widespread fusarium mycotoxin) to exert its toxic effects, including decreased antioxidant capacity and aggravated inflammatory response. These ZEN-induced reproductive abnormalities are partially caused by the declining levels of nicotinamide adenine dinucleotide (NAD+), which results in an imbalance in lipid/glucose metabolism. Accordingly, the present study aimed to investigate whether supplements of nicotinamide mononucleotide (NMN, a NAD+ precursor) in female mice could protect against ZEN-induced reproductive toxicity. In this study, thirty female mice were randomly divided into three groups that were intragastrically administered with i) 0.5% DMSO (the Ctrl group), ii) 3 mg/(kg bw.d) ZEN (the ZEN group), or iii) ZEN + 500 mg/(kg bw.d) NMN (the ZEN/NMN group) for two weeks. The results revealed that, compared with the Ctrl group, animals exposed to ZEN exhibited reproductive toxicity, such as decreased antioxidant capacity and aggravated inflammatory response in reproductive tissues. These effects were strongly correlated with lower activities in key glycolytic enzymes (e.g., ALDOA and PGK), but increased expressions in key lipid-synthesis genes (e.g., LPIN1 and ATGL). These changes contribute to lipid accumulation, specifically for diacylglycerols (DAGs). Furthermore, these ZEN-induced changes were linked with disturbed NAD+ synthesis/degradation, and subsequently decreased NAD+ levels. Notably, NMN supplements in mice protected against these ZEN-induced reproductive abnormalities by boosting NAD+ levels. Herein, the present findings demonstrate that potential strategies to enhance NAD+ levels can protect against ZEN-induced reproductive toxicity.


Subject(s)
Antioxidants , Zearalenone , Mice , Female , Animals , Antioxidants/pharmacology , Antioxidants/metabolism , Zearalenone/toxicity , NAD/metabolism , Lipid Metabolism , Inflammation/chemically induced , Inflammation/metabolism , Genitalia/metabolism , Glycolysis , Lipids
11.
Nat Commun ; 14(1): 8362, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38102126

ABSTRACT

Neurogenins are proneural transcription factors required to specify neuronal identity. Their overexpression in human pluripotent stem cells rapidly produces cortical-like neurons with spiking activity and, because of this, they have been widely adopted for human neuron disease models. However, we do not fully understand the key downstream regulatory effectors responsible for driving neural differentiation. Here, using inducible expression of NEUROG1 and NEUROG2, we identify transcription factors (TFs) required for directed neuronal differentiation by combining expression and chromatin accessibility analyses with a pooled in vitro CRISPR-Cas9 screen targeting all ~1900 TFs in the human genome. The loss of one of these essential TFs (ZBTB18) yields few MAP2-positive neurons. Differentiated ZBTB18-null cells have radically altered gene expression, leading to cytoskeletal defects and stunted neurites and spines. In addition to identifying key downstream TFs for neuronal differentiation, our work develops an integrative multi-omics and TFome-wide perturbation platform to rapidly characterize essential TFs for the differentiation of any human cell type.


Subject(s)
Pluripotent Stem Cells , Transcription Factors , Humans , Transcription Factors/genetics , Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Neurogenesis/genetics , Neurons/metabolism , Cell Differentiation/genetics , Pluripotent Stem Cells/metabolism
12.
J Med Virol ; 95(10): e29171, 2023 10.
Article in English | MEDLINE | ID: mdl-37830751

ABSTRACT

Influenza A virus (IAV) relies on intricate and highly coordinated associations with host factors for efficient replication and transmission. Characterization of such factors holds great significance for development of anti-IAV drugs. Our study identified protein arginine methyltransferase 5 (PRMT5) as a novel host factor indispensable for IAV replication. Silencing PRMT5 resulted in drastic repression of IAV replication. Our findings revealed that PRMT5 interacts with each protein component of viral ribonucleoproteins (vRNPs) and promotes arginine symmetric dimethylation of polymerase basic 2 (PB2). Overexpression of PRMT5 enhanced viral polymerase activity in a dose-dependent manner, emphasizing its role in genome transcription and replication of IAV. Moreover, analysis of PB2 protein sequences across various subtypes of IAVs demonstrated the high conservation of potential RG motifs recognized by PRMT5. Overall, our study suggests that PRMT5 supports IAV replication by facilitating viral polymerase activity by interacting with PB2 and promoting its arginine symmetric dimethylation. This study deepens our understanding of how IAV manipulates host factors to facilitate its replication and highlights the great potential of PRMT5 to serve as an anti-IAV therapeutic target.


Subject(s)
Influenza A virus , Protein-Arginine N-Methyltransferases , Humans , Arginine , Influenza A virus/genetics , Protein-Arginine N-Methyltransferases/genetics , Protein-Arginine N-Methyltransferases/metabolism , Ribonucleoproteins/metabolism , Virus Replication
13.
Am J Emerg Med ; 74: 140-145, 2023 12.
Article in English | MEDLINE | ID: mdl-37837822

ABSTRACT

BACKGROUND: Benign paroxysmal positional vertigo (BPPV) is the most prevalent form of peripheral vertigo, with vascular lesions being one of its suspected causes. The older adults are particularly vulnerable to BPPV. Cerebral small vessel disease (CSVD), on the other hand, is a clinical condition that results from damage of cerebral small vessels. Vascular involvement resulting from age-related risk factors and proinflammatory state may act as the underlying factor linking both BPPV and CSVD. AIM: The objective of this study is to explore the potential correlation between BPPV and CSVD by examining whether individuals aged 50 and older with BPPV exhibit a greater burden of CSVD. MATERIALS AND METHODS: This retrospective study included patients aged 50 years and older who had been diagnosed with BPPV. A control group consisting of patients diagnosed with idiopathic facial neuritis (IFN) during the same time period was also included. The burden of cerebral white matter hyperintensities (WMHs) was evaluated using the Fazekas scale. An ordinal regression analysis was conducted to investigate the potential correlation between BPPV and WMHs. RESULTS: The study included a total of 101 patients diagnosed with BPPV and 116 patients with IFN. Patients with BPPV were found to be significantly more likely (OR = 2.37, 95% CI 1.40-4.03, p = 0.001) to have a higher Fazekas score compared to the control group. Brain infarctions, hypertension, and age were all identified as significant predictors of white matter hyperplasia on MRI, with OR of 9.9 (95% CI 4.21-24.84, P<0.001), 2.86 (95% CI 1.67-5.0, P<0.001), and 1.18 (95% CI 1.13-1.22, P<0.001) respectively. CONCLUSION: Our findings suggest that vascular impairment caused by age-related risk factors and proinflammatory status may be contributing factors to the development of BPPV in individuals aged 50 and above, as we observed a correlation between the suffering of BPPV and the severity of WMHs.


Subject(s)
Benign Paroxysmal Positional Vertigo , Cerebral Small Vessel Diseases , Humans , Middle Aged , Aged , Benign Paroxysmal Positional Vertigo/diagnosis , Benign Paroxysmal Positional Vertigo/etiology , Retrospective Studies , Risk Factors , Age Factors , Cerebral Small Vessel Diseases/complications , Cerebral Small Vessel Diseases/diagnostic imaging
14.
Genet Test Mol Biomarkers ; 27(8): 258-266, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37643323

ABSTRACT

Background: Retinitis pigmentosa (RP) is a complex inherited and progressive degenerative retinal disease. The eyes shut homolog (EYS) is frequently associated with RP is surprisingly high. Exploring the function of EYS is quite difficult due to the unique gene size and species specificity. Gene therapy may provide a breakthrough to treat this disease. Therefore, exploring and clarifying pathogenic mutations of EYS-associated RP has important guiding significance for clinical treatment. Methods: Clinical and molecular genetic data for EYS-associated RP were retrospectively analyzed. Sanger sequencing was applied to identify novel mutations in these patients. Candidate pathogenic variants were subsequently evaluated using bioinformatic tools. Results: A novel pair of compound heterozygous mutations was identified: a novel stop-gain mutation c.2439C>A (p.C813fsX) and a frameshift deletion mutation c.6714delT (p. P2238fsX) of the EYS gene in the RP family. Both of these mutations were rare or absent in the 1000 Genomes Project, dbSNP, and Genome Aggregation Database (gnomAD). These two mutations would result in a lack of multiple functionally important epidermal growth factor-like and Laminin G-like coding regions in EYS. Conclusions: A novel compound heterozygote of the EYS gene in a Chinese family with an autosomal inheritance pattern of RP was identified. Identifying more pathogenic mutations and expanding the mutation spectrum of the EYS gene will contribute to a more comprehensive understanding of the molecular pathogenesis of RP disease that could be gained in the future. It also could provide an important basis for the diagnosis, clinical management, and genetic counseling of the disease.


Subject(s)
East Asian People , Retinitis Pigmentosa , Humans , Retrospective Studies , Mutation/genetics , Retinitis Pigmentosa/genetics , Frameshift Mutation , Eye Proteins/genetics
15.
EBioMedicine ; 95: 104738, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37549632

ABSTRACT

BACKGROUND: Genomic alterations in DNA damage response (DDR) genes are common in metastatic castration-resistant prostate cancer (mCRPC). Understanding how these genomic events impact prognosis and/or treatment response is vital for optimising clinical outcomes. METHODS: Targeted sequencing was performed on 407 plasma samples from 375 men with mCRPC. Using the CLIA-certified PredicineCARE™ cell-free DNA (cfDNA) assay, pathogenic alterations in 152 key genes (including 27 DDR-related genes) were assessed, as was the presence and mechanisms of biallelic loss in BRCA2. FINDINGS: At least one DDR alteration was present in 34.5% (129/375) of patients (including monoallelic alterations). The most frequently altered DDR genes were BRCA2 (19%), ATM (13%), FANCA (5%), CHEK2 (5%) and BRCA1 (3%). Patients with BRCA alterations, especially BRCA2, had significantly worse progression-free survival (PFS) (Hazard ratio (HR) 3.3 [95% CI 1.9-6.0]; Cox regression p < 0.001), overall survival (HR 2.2 [95% CI 1.1-4.5]; Cox regression p = 0.02) and PSA response rates to androgen receptor (AR) pathway inhibitors (32% vs 60%, chi-square p = 0.02). BRCA-deficient tumours were also enriched for alterations within multiple genes including in the AR and PI3K pathways. Zygosity of BRCA2 alterations had no discernible impact on clinical outcomes, with similarly poor PFS for monoallelic vs biallelic loss (median 3.9 months vs 3.4 months vs copy neutral 9.8 months). INTERPRETATION: These data emphasise that the BRCA genes, in particular BRCA2, are key prognostic biomarkers in mCRPC. The clinical utility of BRCA2 as a marker of poor outcomes may, at least in cfDNA assays, be independent of the zygosity state detected. Enrichment of actionable genomic alterations in cfDNA from BRCA-deficient mCRPC may support rational co-targeting strategies in future clinical trials. FUNDING: Several funding sources have supported this study. A full list is provided in the Acknowledgments. No funding was received from Predicine, Inc. during the conduct of the study.


Subject(s)
Cell-Free Nucleic Acids , Prostatic Neoplasms, Castration-Resistant , Humans , Male , Androgen Receptor Antagonists , Biomarkers, Tumor/genetics , Genomics , Phenotype , Phosphatidylinositol 3-Kinases/genetics , Prognosis , Prostatic Neoplasms, Castration-Resistant/diagnosis , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/drug therapy
16.
Hum Gene Ther ; 34(15-16): 719-731, 2023 08.
Article in English | MEDLINE | ID: mdl-37427415

ABSTRACT

The highly conserved ribosomal protein L34 (RPL34) has been reported to play an essential role in the progression of diverse malignancies. RPL34 is aberrantly expressed in multiple cancers, although its significant in colorectal cancer (CRC) is currently unclear. Here, we demonstrated that RPL34 expression was higher in CRC tissues than in normal tissues. Upon RPL34 overexpression, the ability of proliferation, migration, invasion, and metastasis of CRC cells were significantly enhanced in vitro and in vivo. Furthermore, high expression of RPL34 accelerated cell cycle progression, activated the JAK2/STAT3 signaling pathway, and induced the epithelial-to-mesenchymal transition (EMT) program. Conversely, RPL34 silencing inhibited the CRC malignant progression. Utilizing immunoprecipitation assays, we identified the RPL34 interactor, the cullin-associated NEDD8-dissociated protein 1 (CAND1), which is a negative regulator of cullin-RING ligases. CAND1 overexpression reduced the ubiquitin level of RPL34 and stabilized RPL34 protein. CAND1 silencing in CRC cells resulted in a decrease in the ability of proliferation, migration, and invasion. CAND1 overexpression promoted CRC malignant phenotypes and induced EMT, and RPL34 knockdown rescued CAND1-induced CRC progression. In summary, our study indicates that RPL34 acts as a mediator, is stabilized by CAND1, and promotes proliferation and metastasis, in part, through the activation of the JAK2/STAT3 signaling pathway and induction of EMT in CRC.


Subject(s)
Colorectal Neoplasms , Cullin Proteins , Humans , Cullin Proteins/genetics , Cullin Proteins/metabolism , Down-Regulation , Cell Movement/genetics , Signal Transduction , Cell Proliferation/genetics , Colorectal Neoplasms/metabolism , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Neoplasm Metastasis , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
17.
Chaos ; 33(7)2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37459218

ABSTRACT

We propose a physical information neural network with learning rate decay strategy (LrD-PINN) to predict the dynamics of symmetric, asymmetric, and antisymmetric solitons of the self-defocusing saturable nonlinear Schrödinger equation with the PT-symmetric potential and boost the predicted evolutionary distance by an order of magnitude. Taking symmetric solitons as an example, we explore the advantages of the learning rate decay strategy, analyze the anti-interference performance of the model, and optimize the network structure. In addition, the coefficients of the saturable nonlinearity strength and the modulation strength in the PT-symmetric potential are reconstructed from the dataset of symmetric soliton solutions. The application of more advanced machine learning techniques in the field of nonlinear optics can provide more powerful tools and richer ideas for the study of optical soliton dynamics.

18.
iScience ; 26(6): 106933, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37378342

ABSTRACT

The global prevalence and burden of musculoskeletal (MSK) disorders are immense. Advancements in next-generation sequencing (NGS) have generated vast amounts of data, accelerating the research of pathological mechanisms and the development of therapeutic approaches for MSK disorders. However, scattered datasets across various repositories complicate uniform analysis and comparison. Here, we introduce MSdb, a database for visualization and integrated analysis of next-generation sequencing data from human musculoskeletal system, along with manually curated patient phenotype data. MSdb provides various types of analysis, including sample-level browsing of metadata information, gene/miRNA expression, and single-cell RNA-seq dataset. In addition, MSdb also allows integrated analysis for cross-samples and cross-omics analysis, including customized differentially expressed gene/microRNA analysis, microRNA-gene network, scRNA-seq cross-sample/disease integration, and gene regulatory network analysis. Overall, systematic categorizing, standardized processing, and freely accessible knowledge features MSdb a valuable resource for MSK research community.

19.
Nurse Educ Pract ; 70: 103660, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37178479

ABSTRACT

AIM: To evaluate the differences in professional competence development between nursing students in routine clinical practice and those who experienced four additional in-situ simulations. BACKGROUND: The amount of clinical practice time available to nursing students is limited. Occasionally, clinical settings do not provide all of the content that nursing students are expected to acquire. In high-risk clinical scenarios, such as the postanesthesia care unit, clinical practice may not provide sufficient context for students to develop the professional competence. DESIGN: This was a non-blinded, non-randomized, quasi-experimental study. The study was conducted in the postanesthesia care unit of a tertiary hospital in China between April 2021 and December 2022. Nursing students' self-assessed professional competence development and faculty-assessed clinical judgment were used as indicators. METHODS: A total of 30 final year undergraduate nursing students were divided into two groups according to the time they arrived at the unit for their clinical practice. Nursing students in the control group followed the routine teaching protocol of the unit. Students in the simulation group received four additional in-situ simulations during the second and third weeks of their practice in addition to the routine program. Nursing students self-assessed their postanesthesia care unit professional competence at the end of the first and fourth weeks. At the end of the fourth week, the nursing students were evaluated on their clinical judgment. RESULTS: Nursing students in both groups scored higher on the professional competence at the end of the fourth week than at the end of the first week and there was a trend of higher competence improvement in the simulation group than in the control group. For clinical judgment, nursing students in the simulation group scored higher than the control group. CONCLUSIONS: In-situ simulation contributes to the development of professional competence and clinical judgment of nursing students during their clinical practice in the postanesthesia care unit.


Subject(s)
Education, Nursing, Baccalaureate , Students, Nursing , Humans , Education, Nursing, Baccalaureate/methods , Clinical Competence , Professional Competence , China
20.
Discov Oncol ; 14(1): 59, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37154982

ABSTRACT

BACKGROUND: Currently, the development of breast cancer immunotherapy based on the PD-1/PD-L1 pathway is relatively slow, and the specific mechanism affecting the immunotherapy efficacy in breast cancer is still unclear. METHODS: Weighted correlation network analysis (WGCNA) and the negative matrix factorization (NMF) were used to distinguish subtypes related to the PD-1/PD-L1 pathway in breast cancer. Then univariate Cox, least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression were used to construct the prognostic signature. A nomogram was established based on the signature. The relationship between the signature gene IFNG and breast cancer tumor microenvironment was analyzed. RESULTS: Four PD-1/PD-L1 pathway-related subtypes were distinguished. A prognostic signature related to PD-1/PD-L1 pathway typing was constructed to evaluate breast cancer's clinical characteristics and tumor microenvironment. The nomogram based on the RiskScore could be used to accurately predict breast cancer patients' 1-year, 3-year, and 5-year survival probability. The expression of IFNG was positively correlated with CD8+ T cell infiltration in the breast cancer tumor microenvironment. CONCLUSION: A prognostic signature is constructed based on the PD-1/PD-L1 pathway typing in breast cancer, which can guide the precise treatment of breast cancer. The signature gene IFNG is positively related to CD8+ T cell infiltration in breast cancer.

SELECTION OF CITATIONS
SEARCH DETAIL
...