Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Bioengineering (Basel) ; 10(12)2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38136027

ABSTRACT

Bilateral vestibular deficiency (BVD) results in chronic dizziness, blurry vision when moving the head, and postural instability. Vestibular prostheses (VPs) show promise as a treatment, but the VP-restored vestibulo-ocular reflex (VOR) gain in human trials falls short of expectations. We hypothesize that the slope of the rising ramp in stimulation pulses plays an important role in the recruitment of vestibular afferent units. To test this hypothesis, we utilized customized programming to generate ramped pulses with different slopes, testing their efficacy in inducing electrically evoked compound action potentials (eCAPs) and current spread via bench tests and simulations in a virtual inner model created in this study. The results confirmed that the slope of the ramping pulses influenced the recruitment of vestibular afferent units. Subsequently, an optimized stimulation pulse train was identified using model simulations, exhibiting improved modulation of vestibular afferent activity. This optimized slope not only reduced the excitation spread within the semicircular canals (SCCs) but also expanded the neural dynamic range. While the model simulations exhibited promising results, in vitro and in vivo experiments are warranted to validate the findings of this study in future investigations.

2.
Bioengineering (Basel) ; 10(5)2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37237608

ABSTRACT

Cochlear implant (CI) surgery is one of the most utilized treatments for severe hearing loss. However, the effects of a successful scala tympani insertion on the mechanics of hearing are not yet fully understood. This paper presents a finite element (FE) model of the chinchilla inner ear for studying the interrelationship between the mechanical function and the insertion angle of a CI electrode. This FE model includes a three-chambered cochlea and full vestibular system, accomplished using µ-MRI and µ-CT scanning technologies. This model's first application found minimal loss of residual hearing due to insertion angle after CI surgery, and this indicates that it is a reliable and helpful tool for future applications in CI design, surgical planning, and stimuli setup.

3.
Comput Methods Biomech Biomed Engin ; 25(2): 204-214, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34641759

ABSTRACT

We present a 3-D finite element (FE) model of the chinchilla's inner ear consisting of the entire cochlea structure and the vestibular system. The reaction of the basilar membrane to the head rotation and the reaction of ampulla to the stapes movement were investigated. These results demonstrate the existence of hearing-vestibular system interaction. They provide an explanation to the clinical finding on the coexistence between hearing loss and equilibration dysfunction. It is a preliminary, yet critical step toward the development of a comprehensive FE model of an entire ear for mechano-acoustic analysis.


Subject(s)
Cochlea , Vestibule, Labyrinth , Basilar Membrane , Finite Element Analysis , Hearing
4.
Med Eng Phys ; 96: 41-45, 2021 10.
Article in English | MEDLINE | ID: mdl-34565551

ABSTRACT

We present a video oculography (VOG) system with 6-degree-of-freedom (6-DOF) mobility for real-time measurements of the binocular 3D eye position of a small animal. A hybrid hexapod that allowed for multi-axis complex motions with the resolution of the microscopic level was used to control the motion of the animal. The instantaneous eyeball movement of the animal was determined based on two approaches: (1) tracking of marker arrays affixed to the cornea; and (2) tracking the pupil outline. The tracking of the eyeball movement and the motion control of the hexapod were implemented with the LabVIEW virtual instruments. Compared with our previous measurements using a servo-motor-based single-axis VOG system, positional error reduced from more than 4% to less than 0.7%. Validation showed that the tracking errors in three rotational axes are less than 2% for the magnitude and less than 5° for the direction angle. The present VOG system is an effective tool for cross-axis 3D vestibulo-ocular reflex study on small animals.


Subject(s)
Eye Movements , Reflex, Vestibulo-Ocular , Animals , Video Recording
5.
Hear Res ; 403: 108177, 2021 04.
Article in English | MEDLINE | ID: mdl-33524791

ABSTRACT

Hearing damage is one of the most frequently observed injuries in Service members and Veterans even though hearing protection devices (HPDs, e.g. earplugs) have been implemented to prevent blast-induced hearing loss. However, the formation and prevention mechanism of the blast-induced hearing damage remains unclear due to the difficulty for conducting biomechanical measurements in ears during blast exposure. Recently, an approach reported by Jiang et al. (2019) used two laser Doppler vibrometers (LDVs) to measure the motion of the tympanic membrane (TM) in human temporal bones during blast exposure. Using the dual laser setup, we further developed the technology to detect the movement of the stapes footplate (SFP) in ears with and without HPDs while under blast exposure. Eight fresh human cadaveric temporal bones (TBs) were involved in this study. The TB was mounted in a "head block" after performing a facial recess surgery to access the SFP, and a pressure sensor was inserted near the TM in the ear canal to measure the pressure reaching the TM (P1). The TB was exposed to a blast overpressure measuring around 7 psi or 48 kPa at the entrance of the ear canal (P0). Two LDVs were used to measure the vibrations of the SFP and TB (as a reference). The exact motion of the SFP was determined by subtracting the TB motion from the SFP data. Results included a measured peak-to-peak SFP displacement of 68.7 ± 31.6 µm (mean ± SD) from all eight TBs without HPDs. In five of the TBs, the insertion of a foam earplug reduced the SFP displacement from 48.3 ± 6.3 µm to 21.8 ± 10.4 µm. The time-frequency analysis of the SFP velocity signals indicated that most of the energy spectrum was concentrated at frequencies below 4 kHz within the first 2 ms after blast and the energy was reduced after the insertion of HPDs. This study describes a new methodology to quantitatively characterize the response of the middle ear and the energy entering the cochlea during blast exposure. The experimental data are critical for determining the injury of the peripheral auditory system and elucidating the damage formation and prevention mechanism in an ear exposed to blast.


Subject(s)
Ossicular Prosthesis , Stapes , Ear, Middle , Explosions , Humans , Lasers , Motion , Temporal Bone , Vibration
6.
Otol Neurotol ; 42(2): 319-326, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33278245

ABSTRACT

HYPOTHESIS: The geometry and the mechanical property of the round window membrane (RWM) have a fundamental impact on the function of cochlea. BACKGROUND: Understanding the mechanical behavior of RWM is important for cochlear surgery and design for the cochlear implant. Although the anatomy of RWM has been widely studied and described in the literature, argument remains regarding the true shape of RWM. The mechanical properties of RWM are also scarcely reported due to the difficulty of the measurement of the small size RWM. METHODS: In this paper, micro-fringe projection was used to reconstruct the 3-dimensional geometries of 14 RWMs. Mechanical properties of the RWMs were subsequently measured using finite element (FE) model and an inverse method. The three-dimensional surface topographies and the curvatures of the two major directions reconstructed from the micro-fringe projection both demonstrated wide variations among samples. RESULTS: The diameters of the RWMs vary from 1.65 to 2.2 mm and the curvatures vary from -0.97 to 3.76 mm-1. The nonlinear elasticity parameters in the Ogden model for each sample was measured and the average effective Young's modulus is approximately 1.98 MPa. CONCLUSION: The geometries and mechanical properties of the human RWM measured in the work could potentially be applied to surgery design and on modeling analysis for the cochlea.


Subject(s)
Cochlear Implantation , Cochlear Implants , Cochlea , Elastic Modulus , Humans , Round Window, Ear/surgery
7.
J Assoc Res Otolaryngol ; 21(5): 395-407, 2020 10.
Article in English | MEDLINE | ID: mdl-32783162

ABSTRACT

Mechanical properties of the tympanic membrane (TM) play an important role in sound transmission through the middle ear. While numerous studies have investigated the mechanical properties of the adult human TM, the effects of age on the TM's properties remain unclear because of the limited published data on the TM of young children. To address this deprivation, we used baboons in this study as an animal model for investigating the effect of age on the mechanical properties of the TM. Temporal bones were harvested from baboons (Papio anubis) of four different age groups: less than 1 year, 1-3 years, 3-5 years, and older than 5 years of age or adult. The TM specimens were harvested from baboon temporal bones and cut into rectangle strips along the inferior-superior direction, mainly capturing the influence of the circumferential direction fibers on the TM's mechanical properties. The elasticity, ultimate tensile strength, and relaxation behavior of the baboon TM were measured in each of the four age groups with a mechanical analyzer. The average effective Young's modulus of adult baboon TM was approximately 3.1 MPa, about two times higher than that of a human TM. The Young's moduli of the TM samples demonstrated a 26 % decrease from newborn to adult (from 4.2 to 3.1 MPa). The average ultimate tensile strength of the TMs for all the age groups was ~ 2.5 MPa. There was no significant change in the ultimate tensile strength and relaxation behavior among age groups. The preliminary results reported in this study provide a first step towards understanding the effect of age on the TM mechanical properties from young to adult.


Subject(s)
Aging/physiology , Papio/physiology , Tympanic Membrane/physiology , Animals , Female , Male , Tensile Strength
8.
J Assoc Res Otolaryngol ; 20(4): 313-339, 2019 08.
Article in English | MEDLINE | ID: mdl-31165284

ABSTRACT

To better understand the spread of prosthetic current in the inner ear and to facilitate design of electrode arrays and stimulation protocols for a vestibular implant system intended to restore sensation after loss of vestibular hair cell function, we created a model of the primate labyrinth. Because the geometry of the implanted ear is complex, accurately modeling effects of prosthetic stimuli on vestibular afferent activity required a detailed representation of labyrinthine anatomy. Model geometry was therefore generated from three-dimensional (3D) reconstructions of a normal rhesus temporal bone imaged using micro-MRI and micro-CT. For systematically varied combinations of active and return electrode location, the extracellular potential field during a biphasic current pulse was computed using finite element methods. Potential field values served as inputs to stochastic, nonlinear dynamic models for each of 2415 vestibular afferent axons, each with unique origin on the neuroepithelium and spiking dynamics based on a modified Smith and Goldberg model. We tested the model by comparing predicted and actual 3D vestibulo-ocular reflex (VOR) responses for eye rotation elicited by prosthetic stimuli. The model was individualized for each implanted animal by placing model electrodes in the standard labyrinth geometry based on CT localization of actual implanted electrodes. Eye rotation 3D axes were predicted from relative proportions of model axons excited within each of the three ampullary nerves, and predictions were compared to archival eye movement response data measured in three alert rhesus monkeys using 3D scleral coil oculography. Multiple empirically observed features emerged as properties of the model, including effects of changing active and return electrode position. The model predicts improved prosthesis performance when the reference electrode is in the labyrinth's common crus (CC) rather than outside the temporal bone, especially if the reference electrode is inserted nearly to the junction of the CC with the vestibule. Extension of the model to human anatomy should facilitate optimal design of electrode arrays for clinical application.


Subject(s)
Ear, Inner/physiology , Electric Stimulation , Electrodes, Implanted , Macaca mulatta/physiology , Models, Theoretical , Animals , Ear, Inner/surgery , Female , Macaca mulatta/surgery , Male
9.
J Neurophysiol ; 121(6): 2256-2266, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30995152

ABSTRACT

Electrical stimulation of vestibular afferent neurons to partially restore semicircular canal sensation of head rotation and the stabilizing reflexes that sensation supports has potential to effectively treat individuals disabled by bilateral vestibular hypofunction. Ideally, a vestibular implant system using this approach would be integrated with a cochlear implant, which would provide clinicians with a means to simultaneously treat loss of both vestibular and auditory sensation. Despite obvious similarities, merging these technologies poses several challenges, including stimulus pulse timing errors that arise when a system must implement a pulse frequency modulation-encoding scheme (as is used in vestibular implants to mimic normal vestibular nerve encoding of head movement) within fixed-rate continuous interleaved sampling (CIS) strategies used in cochlear implants. Pulse timing errors caused by temporal discretization inherent to CIS create stair step discontinuities of the vestibular implant's smooth mapping of head velocity to stimulus pulse frequency. In this study, we assayed electrically evoked vestibuloocular reflex responses in two rhesus macaques using both a smooth pulse frequency modulation map and a discretized map corrupted by temporal errors typical of those arising in a combined cochlear-vestibular implant. Responses were measured using three-dimensional scleral coil oculography for prosthetic electrical stimuli representing sinusoidal head velocity waveforms that varied over 50-400°/s and 0.1-5 Hz. Pulse timing errors produced negligible effects on responses across all canals in both animals, indicating that temporal discretization inherent to implementing a pulse frequency modulation-coding scheme within a cochlear implant's CIS fixed pulse timing framework need not sacrifice performance of the combined system's vestibular implant portion. NEW & NOTEWORTHY Merging a vestibular implant system with existing cochlear implant technology can provide clinicians with a means to restore both vestibular and auditory sensation. Pulse timing errors inherent to integration of pulse frequency modulation vestibular stimulation with fixed-rate, continuous interleaved sampling cochlear implant stimulation would discretize the smooth head velocity encoding of a combined device. In this study, we show these pulse timing errors produce negligible effects on electrically evoked vestibulo-ocular reflex responses in two rhesus macaques.


Subject(s)
Neural Prostheses/standards , Reaction Time , Reflex, Vestibulo-Ocular , Animals , Eye Movements , Female , Head Movements , Macaca mulatta , Neurons, Afferent/physiology , Sensory Aids/standards , Vestibular Evoked Myogenic Potentials
10.
J Assoc Res Otolaryngol ; 18(4): 601-617, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28646272

ABSTRACT

Sensorineural losses of hearing and vestibular sensation due to hair cell dysfunction are among the most common disabilities. Recent preclinical research demonstrates that treatment of the inner ear with a variety of compounds, including gene therapy agents, may elicit regeneration and/or repair of hair cells in animals exposed to ototoxic medications or other insults to the inner ear. Delivery of gene therapy may also offer a means for treatment of hereditary hearing loss. However, injection of a fluid volume sufficient to deliver an adequate dose of a pharmacologic agent could, in theory, cause inner ear trauma that compromises functional outcome. The primary goal of the present study was to assess that risk in rhesus monkeys, which closely approximates humans with regard to middle and inner ear anatomy. Secondary goals were to identify the best delivery route into the primate ear from among two common surgical approaches (i.e., via an oval window stapedotomy and via the round window) and to determine the relative volumes of rhesus, rodent, and human labyrinths for extrapolation of results to other species. We measured hearing and vestibular functions before and 2, 4, and 8 weeks after unilateral injection of phosphate-buffered saline vehicle (PBSV) into the perilymphatic space of normal rhesus monkeys at volumes sufficient to deliver an atoh1 gene therapy vector. To isolate effects of injection, PBSV without vector was used. Assays included behavioral observation, auditory brainstem responses, distortion product otoacoustic emissions, and scleral coil measurement of vestibulo-ocular reflexes during whole-body rotation in darkness. Three groups (N = 3 each) were studied. Group A received a 10 µL transmastoid/trans-stapes injection via a laser stapedotomy. Group B received a 10 µL transmastoid/trans-round window injection. Group C received a 30 µL transmastoid/trans-round window injection. We also measured inner ear fluid space volume via 3D reconstruction of computed tomography (CT) images of adult C57BL6 mouse, rat, rhesus macaque, and human temporal bones (N = 3 each). Injection was well tolerated by all animals, with eight of nine exhibiting no signs of disequilibrium and one animal exhibiting transient disequilibrium that resolved spontaneously by 24 h after surgery. Physiologic results at the final, 8-week post-injection measurement showed that injection was well tolerated. Compared to its pretreatment values, no treated ear's ABR threshold had worsened by more than 5 dB at any stimulus frequency; distortion product otoacoustic emissions remained detectable above the noise floor for every treated ear (mean, SD and maximum deviation from baseline: -1.3, 9.0, and -18 dB, respectively); and no animal exhibited a reduction of more than 3 % in vestibulo-ocular reflex gain during high-acceleration, whole-body, passive yaw rotations in darkness toward the treated side. All control ears and all operated ears with definite histologic evidence of injection through the intended site showed similar findings, with intact hair cells in all five inner ear sensory epithelia and intact auditory/vestibular neurons. The relative volumes of mouse, rat, rhesus, and human inner ears as measured by CT were (mean ± SD) 2.5 ± 0.1, 5.5 ± 0.4, 59.4 ± 4.7 and 191.1 ± 4.7 µL. These results indicate that injection of PBSV at volumes sufficient for gene therapy delivery can be accomplished without destruction of inner ear structures required for hearing and vestibular sensation.


Subject(s)
Ear, Inner , Evoked Potentials, Auditory, Brain Stem , Injections/adverse effects , Reflex, Vestibulo-Ocular , Animals , Ear, Inner/diagnostic imaging , Ear, Inner/pathology , Genetic Therapy/methods , Hearing Loss, Sensorineural/therapy , Humans , Injections/methods , Macaca mulatta , Mice, Inbred C57BL , Organ Size , Rats, Wistar , Vestibular Diseases/therapy
11.
IEEE Trans Biomed Circuits Syst ; 10(2): 269-79, 2016 Apr.
Article in English | MEDLINE | ID: mdl-25974945

ABSTRACT

We present a high-voltage CMOS neural-interface chip for a multichannel vestibular prosthesis (MVP) that measures head motion and modulates vestibular nerve activity to restore vision- and posture-stabilizing reflexes. This application specific integrated circuit neural interface (ASIC-NI) chip was designed to work with a commercially available microcontroller, which controls the ASIC-NI via a fast parallel interface to deliver biphasic stimulation pulses with 9-bit programmable current amplitude via 16 stimulation channels. The chip was fabricated in the ONSemi C5 0.5 micron, high-voltage CMOS process and can accommodate compliance voltages up to 12 V, stimulating vestibular nerve branches using biphasic current pulses up to 1.45±0.06 mA with durations as short as 10 µs/phase. The ASIC-NI includes a dedicated digital-to-analog converter for each channel, enabling it to perform complex multipolar stimulation. The ASIC-NI replaces discrete components that cover nearly half of the 2nd generation MVP (MVP2) printed circuit board, reducing the MVP system size by 48% and power consumption by 17%. Physiological tests of the ASIC-based MVP system (MVP2A) in a rhesus monkey produced reflexive eye movement responses to prosthetic stimulation similar to those observed when using the MVP2. Sinusoidal modulation of stimulus pulse rate from 68-130 pulses per second at frequencies from 0.1 to 5 Hz elicited appropriately-directed slow phase eye velocities ranging in amplitude from 1.9-16.7 °/s for the MVP2 and 2.0-14.2 °/s for the MVP2A. The eye velocities evoked by MVP2 and MVP2A showed no significant difference ( t-test, p=0.34), suggesting that the MVP2A achieves performance at least as good as the larger MVP2.


Subject(s)
Head Movements , Neural Prostheses , Vestibular Nerve/physiology , Animals , Electric Stimulation/instrumentation , Equipment Design , Humans , Vestibular Diseases/therapy
12.
J Assoc Res Otolaryngol ; 16(3): 373-87, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25790951

ABSTRACT

Bilateral vestibular deficiency (BVD) due to gentamicin ototoxicity can significantly impact quality of life and result in large socioeconomic burdens. Restoring sensation of head rotation using an implantable multichannel vestibular prosthesis (MVP) is a promising treatment approach that has been tested in animals and humans. However, uncertainty remains regarding the histopathologic effects of gentamicin ototoxicity alone or in combination with electrode implantation. Understanding these histological changes is important because selective MVP-driven stimulation of semicircular canals (SCCs) depends on persistence of primary afferent innervation in each SCC crista despite both the primary cause of BVD (e.g., ototoxic injury) and surgical trauma associated with MVP implantation. Retraction of primary afferents out of the cristae and back toward Scarpa's ganglion would render spatially selective stimulation difficult to achieve and could limit utility of an MVP that relies on electrodes implanted in the lumen of each ampulla. We investigated histopathologic changes of the inner ear associated with intratympanic gentamicin (ITG) injection and/or MVP electrode array implantation in 11 temporal bones from six rhesus macaque monkeys. Hematoxylin and eosin-stained 10-µm temporal bone sections were examined under light microscopy for four treatment groups: normal (three ears), ITG-only (two ears), MVP-only (two ears), and ITG + MVP (four ears). We estimated vestibular hair cell (HC) surface densities for each sensory neuroepithelium and compared findings across end organs and treatment groups. In ITG-only, MVP-only, and ITG + MVP ears, we observed decreased but persistent ampullary nerve fibers of SCC cristae despite ITG treatment and/or MVP electrode implantation. ITG-only and ITG + MVP ears exhibited neuroepithelial thinning and loss of type I HCs in the cristae but little effect on the maculae. MVP-only and ITG + MVP ears exhibited no signs of trauma to the cochlea or otolith end organs except in a single case of saccular injury due to over-insertion of the posterior SCC electrode. While implanted electrodes reached to within 50-760 µm of the target cristae and were usually ensheathed in a thin fibrotic capsule, dense fibrotic reaction and osteoneogenesis were each observed in only one of six electrode tracts examined. Consistent with physiologic studies that have demonstrated directionally appropriate vestibulo-ocular reflex responses to MVP electrical stimulation years after implantation in these animals, histologic findings in the present study indicate that although intralabyrinthine MVP implantation causes some inner ear trauma, it can be accomplished without destroying the distal afferent fibers an MVP is designed to excite.


Subject(s)
Anti-Bacterial Agents/toxicity , Gentamicins/toxicity , Neural Prostheses , Prosthesis Implantation , Semicircular Canals/drug effects , Animals , Electric Stimulation , Electrodes, Implanted , Injections , Macaca mulatta , Semicircular Canals/innervation , Semicircular Canals/pathology , Vestibular Diseases/therapy
13.
PLoS One ; 8(10): e78767, 2013.
Article in English | MEDLINE | ID: mdl-24147142

ABSTRACT

The vestibular system detects motion of the head in space and in turn generates reflexes that are vital for our daily activities. The eye movements produced by the vestibulo-ocular reflex (VOR) play an essential role in stabilizing the visual axis (gaze), while vestibulo-spinal reflexes ensure the maintenance of head and body posture. The neuronal pathways from the vestibular periphery to the cervical spinal cord potentially serve a dual role, since they function to stabilize the head relative to inertial space and could thus contribute to gaze (eye-in-head + head-in-space) and posture stabilization. To date, however, the functional significance of vestibular-neck pathways in alert primates remains a matter of debate. Here we used a vestibular prosthesis to 1) quantify vestibularly-driven head movements in primates, and 2) assess whether these evoked head movements make a significant contribution to gaze as well as postural stabilization. We stimulated electrodes implanted in the horizontal semicircular canal of alert rhesus monkeys, and measured the head and eye movements evoked during a 100 ms time period for which the contribution of longer latency voluntary inputs to the neck would be minimal. Our results show that prosthetic stimulation evoked significant head movements with latencies consistent with known vestibulo-spinal pathways. Furthermore, while the evoked head movements were substantially smaller than the coincidently evoked eye movements, they made a significant contribution to gaze stabilization, complementing the VOR to ensure that the appropriate gaze response is achieved. We speculate that analogous compensatory head movements will be evoked when implanted prosthetic devices are transitioned to human patients.


Subject(s)
Eye Movements/physiology , Head Movements/physiology , Posture/physiology , Animals , Macaca mulatta , Reflex, Vestibulo-Ocular/physiology
14.
J Assoc Res Otolaryngol ; 14(6): 863-77, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24013822

ABSTRACT

Bilateral loss of vestibular sensation can be disabling. We have shown that a multichannel vestibular prosthesis (MVP) can partly restore vestibular sensation as evidenced by improvements in the 3-dimensional angular vestibulo-ocular reflex (3D VOR). However, a key challenge is to minimize misalignment between the axes of eye and head rotation, which is apparently caused by current spread beyond each electrode's targeted nerve branch. We recently reported that rodents wearing a MVP markedly improve 3D VOR alignment during the first week after MVP activation, probably through the same central nervous system adaptive mechanisms that mediate cross-axis adaptation over time in normal individuals wearing prisms that cause visual scene movement about an axis different than the axis of head rotation. We hypothesized that rhesus monkeys would exhibit similar improvements with continuous prosthetic stimulation over time. We created bilateral vestibular deficiency in four rhesus monkeys via intratympanic injection of gentamicin. A MVP was mounted to the cranium, and eye movements in response to whole-body passive rotation in darkness were measured repeatedly over 1 week of continuous head motion-modulated prosthetic electrical stimulation. 3D VOR responses to whole-body rotations about each semicircular canal axis were measured on days 1, 3, and 7 of chronic stimulation. Horizontal VOR gain during 1 Hz, 50 °/s peak whole-body rotations before the prosthesis was turned on was <0.1, which is profoundly below normal (0.94 ± 0.12). On stimulation day 1, VOR gain was 0.4-0.8, but the axis of observed eye movements aligned poorly with head rotation (misalignment range ∼30-40 °). Substantial improvement of axis misalignment was observed after 7 days of continuous motion-modulated prosthetic stimulation under normal diurnal lighting. Similar improvements were noted for all animals, all three axes of rotation tested, for all sinusoidal frequencies tested (0.05-5 Hz), and for high-acceleration transient rotations. VOR asymmetry changes did not reach statistical significance, although they did trend toward slight improvement over time. Prior studies had already shown that directional plasticity reduces misalignment when a subject with normal labyrinths views abnormal visual scene movement. Our results show that the converse is also true: individuals receiving misoriented vestibular sensation under normal viewing conditions rapidly adapt to restore a well-aligned 3D VOR. Considering the similarity of VOR physiology across primate species, similar effects are likely to occur in humans using a MVP to treat bilateral vestibular deficiency.


Subject(s)
Neural Prostheses , Prosthesis Implantation , Reflex, Vestibulo-Ocular/physiology , Semicircular Canals/physiology , Vestibule, Labyrinth/innervation , Adaptation, Physiological , Animals , Macaca mulatta , Rotation
15.
IEEE Trans Neural Syst Rehabil Eng ; 21(5): 830-9, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23649285

ABSTRACT

No adequate treatment exists for individuals who remain disabled by bilateral loss of vestibular (inner ear inertial) sensation despite rehabilitation. We have restored vestibular reflexes using lab-built multichannel vestibular prostheses (MVPs) in animals, but translation to clinical practice may be best accomplished by modification of a commercially available cochlear implant (CI). In this interim report, we describe preliminary efforts toward that goal. We developed software and circuitry to sense head rotation and drive a CI's implanted stimulator (IS) to deliver up to 1 K pulses/s via nine electrodes implanted near vestibular nerve branches. Studies in two rhesus monkeys using the modified CI revealed in vivo performance similar to our existing dedicated MVPs. A key focus of our study was the head-worn unit (HWU), which magnetically couples across the scalp to the IS. The HWU must remain securely fixed to the skull to faithfully sense head motion and maintain continuous stimulation. We measured normal and shear force thresholds at which HWU-IS decoupling occurred as a function of scalp thickness and calculated pressure exerted on the scalp. The HWU remained attached for human scalp thicknesses from 3-7.8 mm for forces experienced during routine daily activities, while pressure on the scalp remained below capillary perfusion pressure.


Subject(s)
Cochlear Implants , Prostheses and Implants , Vestibule, Labyrinth/physiology , Animals , Electric Stimulation , Electromagnetic Fields , Electronics , Eye Movements/physiology , Macaca mulatta , Prosthesis Design , Prosthesis Implantation , Software , Vestibular Diseases/rehabilitation , Vestibular Nerve/physiology
16.
J Neurosci Methods ; 215(2): 161-3, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23411123

ABSTRACT

Maintaining a clean, quiescent tissue surface that is free of granulation and infection in the floor of a head-mounted chamber used for intracranial single-unit recording studies typically requires frequent cleaning. Considering the favourable outcomes of ontological surgical techniques that have long been used to create a dry, skin-lined mastoid cavity in patients with chronic otitis media, skin should be an ideal biological dressing to cover otherwise exposed dura mater in recording chambers. In chambers that required frequent cleaning, we harvested a thin layer of skin without hair follicles from the medial surface of the upper arms of two Rhesus monkeys and grafted the skin on the exposed dura surface. Each case resulted in a clean, dry, insensate, self-healing, easily maintained tissue surface that remained healthy despite the reduced frequency of chamber maintenance. We recommend this technique to reduce the potential for infection, to prevent cerebral spinal fluid leakage or bleeding in experiment and to minimise animal anxiety that might otherwise result from frequent chamber cleanings.


Subject(s)
Brain/cytology , Neurons/physiology , Skin Transplantation/methods , Action Potentials/physiology , Animals , Craniotomy , Dura Mater , Head/anatomy & histology , Head/physiology , Macaca mulatta
17.
J Assoc Res Otolaryngol ; 14(2): 233-48, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23355001

ABSTRACT

An implantable prosthesis that stimulates vestibular nerve branches to restore the sensation of head rotation and the three-dimensional (3D) vestibular ocular reflex (VOR) could benefit individuals disabled by bilateral loss of vestibular sensation. Our group has developed a vestibular prosthesis that partly restores normal function in animals by delivering biphasic current pulses via electrodes implanted in semicircular canals. Despite otherwise promising results, this approach has been limited by insufficient velocity of VOR response to head movements that should inhibit the implanted labyrinth and by misalignment between direction of head motion and prosthetically elicited VOR. We report that significantly larger VOR eye velocities in the inhibitory direction can be elicited by adapting a monkey to elevated baseline stimulation rate and current prior to stimulus modulation and then concurrently modulating ("co-modulating") both rate and current below baseline levels to encode inhibitory angular head velocity. Co-modulation of pulse rate and current amplitude above baseline can also elicit larger VOR eye responses in the excitatory direction than do either pulse rate modulation or current modulation alone. Combining these stimulation strategies with a precompensatory 3D coordinate transformation improves alignment and magnitude of evoked VOR eye responses. By demonstrating that a combination of co-modulation and precompensatory transformation strategies achieves a robust VOR response in all directions with significantly improved alignment in an animal model that closely resembles humans with vestibular loss, these findings provide a solid preclinical foundation for application of vestibular stimulation in humans.


Subject(s)
Cochlear Implantation , Electric Stimulation Therapy , Macaca mulatta/physiology , Reflex, Vestibulo-Ocular/physiology , Vestibule, Labyrinth/physiology , Adaptation, Physiological/physiology , Animals , Electrodes , Eye Movements/physiology , Female , Head Movements/physiology , Male , Models, Animal , Semicircular Canals/physiology
18.
Hear Res ; 281(1-2): 74-83, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21888961

ABSTRACT

Profound bilateral loss of vestibular hair cell function can cause chronically disabling loss of balance and inability to maintain stable vision during head and body movements. We have previously shown that chinchillas rendered bilaterally vestibular-deficient via intratympanic administration of the ototoxic antibiotic gentamicin regain a more nearly normal 3-dimensional vestibulo-ocular reflex (3D VOR) when head motion information sensed by a head-mounted multichannel vestibular prosthesis (MVP) is encoded via rate-modulated pulsatile stimulation of vestibular nerve branches. Despite significant improvement versus the unaided condition, animals still exhibited some 3D VOR misalignment (i.e., the 3D axis of eye movement responses did not precisely align with the axis of head rotation), presumably due to current spread between a given ampullary nerve's stimulating electrode(s) and afferent fibers in non-targeted branches of the vestibular nerve. Assuming that effects of current spread depend on relative orientation and separation between nerve branches, anatomic differences between chinchilla and human labyrinths may limit the extent to which results in chinchillas accurately predict MVP performance in humans. In this report, we describe the MVP-evoked 3D VOR measured in alert rhesus monkeys, which have labyrinths that are larger than chinchillas and temporal bone anatomy more similar to humans. Electrodes were implanted in five monkeys treated with intratympanic gentamicin to bilaterally ablate vestibular hair cell mechanosensitivity. Eye movements mediated by the 3D VOR were recorded during passive sinusoidal (0.2-5 Hz, peak 50°/s) and acceleration-step (1000°/s(2) to 150°/s) whole-body rotations in darkness about each semicircular canal axis. During constant 100 pulse/s stimulation (i.e., MVP powered ON but set to stimulate each ampullary nerve at a constant mean baseline rate not modulated by head motion), 3D VOR responses to head rotation exhibited profoundly low gain [(mean eye velocity amplitude)/(mean head velocity amplitude) < 0.1] and large misalignment between ideal and actual eye movements. In contrast, motion-modulated sinusoidal MVP stimuli elicited a 3D VOR with gain 0.4-0.7 and axis misalignment of 21-38°, and responses to high-acceleration transient head rotations exhibited gain and asymmetry closer to those of unilaterally gentamicin-treated animals (i.e., with one intact labyrinth) than to bilaterally gentamicin-treated animals without MVP stimulation. In comparison to responses observed under similar conditions in chinchillas, acute responses to MVP stimulation in rhesus macaque monkeys were slightly better aligned to the desired rotation axis. Responses during combined rotation and prosthetic stimulation were greater than when either stimulus was presented alone, suggesting that the central nervous system uses MVP input in the context of multisensory integration. Considering the similarity in temporal bone anatomy and VOR performance between rhesus monkeys and humans, these observations suggest that an MVP will likely restore a useful level of vestibular sensation and gaze stabilization in humans.


Subject(s)
Neural Prostheses , Postural Balance , Prosthesis Implantation , Reflex, Vestibulo-Ocular , Vestibular Diseases/therapy , Vestibule, Labyrinth/innervation , Acceleration , Animals , Disease Models, Animal , Electric Stimulation , Eye Movements , Female , Gentamicins , Head Movements , Macaca mulatta , Male , Orientation , Prosthesis Design , Rotation , Time Factors , Vestibular Diseases/chemically induced , Vestibular Diseases/physiopathology , Vestibular Function Tests
19.
IEEE Trans Neural Syst Rehabil Eng ; 19(5): 588-98, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21859631

ABSTRACT

In normal individuals, the vestibular labyrinths sense head movement and mediate reflexes that maintain stable gaze and posture. Bilateral loss of vestibular sensation causes chronic disequilibrium, oscillopsia, and postural instability. We describe a new multichannel vestibular prosthesis (MVP) intended to restore modulation of vestibular nerve activity with head rotation. The device comprises motion sensors to measure rotation and gravitoinertial acceleration, a microcontroller to calculate pulse timing, and stimulator units that deliver constant-current pulses to microelectrodes implanted in the labyrinth. This new MVP incorporates many improvements over previous prototypes, including a 50% decrease in implant size, a 50% decrease in power consumption, a new microelectrode array design meant to simplify implantation and reliably achieve selective nerve-electrode coupling, multiple current sources conferring ability to simultaneously stimulate on multiple electrodes, and circuitry for in vivo measurement of electrode impedances. We demonstrate the performance of this device through in vitro bench-top characterization and in vivo physiological experiments with a rhesus macaque monkey.


Subject(s)
Prostheses and Implants , Prosthesis Design/methods , Semicircular Canals/physiology , Vestibule, Labyrinth/physiology , Acceleration , Algorithms , Amplifiers, Electronic , Animals , Computers , Electric Stimulation , Electrodes , Electronics , Hair Cells, Vestibular/physiology , Macaca mulatta , Prosthesis Implantation , Rotation , Sensation , Software , Vestibular Nerve/physiology , Vestibule, Labyrinth/surgery , Wireless Technology
20.
Exp Brain Res ; 210(3-4): 595-606, 2011 May.
Article in English | MEDLINE | ID: mdl-21374081

ABSTRACT

By sensing three-dimensional (3D) head rotation and electrically stimulating the three ampullary branches of a vestibular nerve to encode head angular velocity, a multichannel vestibular prosthesis (MVP) can restore vestibular sensation to individuals disabled by loss of vestibular hair cell function. However, current spread to afferent fibers innervating non-targeted canals and otolith end organs can distort the vestibular nerve activation pattern, causing misalignment between the perceived and actual axis of head rotation. We hypothesized that over time, central neural mechanisms can adapt to correct this misalignment. To test this, we rendered five chinchillas vestibular deficient via bilateral gentamicin treatment and unilaterally implanted them with a head-mounted MVP. Comparison of 3D angular vestibulo-ocular reflex (aVOR) responses during 2 Hz, 50°/s peak horizontal sinusoidal head rotations in darkness on the first, third, and seventh days of continual MVP use revealed that eye responses about the intended axis remained stable (at about 70% of the normal gain) while misalignment improved significantly by the end of 1 week of prosthetic stimulation. A comparable time course of improvement was also observed for head rotations about the other two semicircular canal axes and at every stimulus frequency examined (0.2-5 Hz). In addition, the extent of disconjugacy between the two eyes progressively improved during the same time window. These results indicate that the central nervous system rapidly adapts to multichannel prosthetic vestibular stimulation to markedly improve 3D aVOR alignment within the first week after activation. Similar adaptive improvements are likely to occur in other species, including humans.


Subject(s)
Adaptation, Physiological/physiology , Head Movements , Prostheses and Implants , Reflex, Vestibulo-Ocular/physiology , Vestibule, Labyrinth/physiology , Animals , Chinchilla , Electric Stimulation/methods , Eye Movements , Female , Functional Laterality/physiology , Rotation
SELECTION OF CITATIONS
SEARCH DETAIL
...