Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Biosens Bioelectron ; 255: 116240, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38554576

ABSTRACT

Public health events caused by pathogens have imposed significant economic and societal burdens. However, conventional methods still face challenges including complex operations, the need for trained operators, and sophisticated instruments. Here, we proposed a fully integrated and automated centrifugal microfluidic chip, also termed IACMC, for point-of-care multiplexed molecular diagnostics by harnessing the advantages of active and passive valves. The IACMC incorporates multiple essential components including a pneumatic balance module for sequential release of multiple reagents, a pneumatic centrifugation-assisted module for on-demand solution release, an on-chip silicon membrane module for nucleic acid extraction, a Coriolis force-mediated fluid switching module, and an amplification module. Numerical simulation and visual validation were employed to iterate and optimize the chip's structure. Upon sample loading, the chip automatically executes the entire process of bacterial sample lysis, nucleic acid capture, elution quantification, and isothermal LAMP amplification. By optimizing crucial parameters including centrifugation speed, direction of rotation, and silicone membrane thickness, the chip achieves exceptional sensitivity (twenty-five Salmonella or forty Escherichia coli) and specificity in detecting Escherichia coli and Salmonella within 40 min. The development of IACMC will drive advancements in centrifugal microfluidics for point-of-care testing and holds potential for broader applications in precision medicine including high-throughput biochemical analysis immune diagnostics, and drug susceptibility testing.


Subject(s)
Biosensing Techniques , Mycobacterium tuberculosis , Nucleic Acids , Microfluidics , Point-of-Care Systems , Microbial Sensitivity Tests , Pathology, Molecular , Nucleic Acid Amplification Techniques/methods , Point-of-Care Testing , Nucleic Acids/analysis , Escherichia coli , Lab-On-A-Chip Devices
2.
Adv Mater ; 35(51): e2304514, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37784226

ABSTRACT

Bacterial pneumonia is the leading cause of death worldwide among all infectious diseases. However, currently available vaccines against fatal bacterial lung infections, e.g., pneumonic plague, are accompanied by limitations, including insufficient antigen-adjuvant co-delivery and inadequate immune stimulation. Therefore, there is an urgent requirement to develop next-generation vaccines to improve the interaction between antigen and adjuvant, as well as enhance the effects of immune stimulation. This study develops a novel amino-decorated mesoporous manganese silicate nanoparticle (AMMSN) loaded with rF1-V10 (rF1-V10@AMMSN) to prevent pneumonic plague. These results suggest that subcutaneous immunization with rF1-V10@AMMSN in a prime-boost strategy induces robust production of rF1-V10-specific IgG antibodies with a geometric mean titer of 315,844 at day 42 post-primary immunization, which confers complete protection to mice against 50 × LD50 of Yersinia pestis (Y. pestis) challenge via the aerosolized intratracheal route. Mechanistically, rF1-V10@AMMSN can be taken up by dendritic cells (DCs) and promote DCs maturation through activation of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway and production of type I interferon. This process results in enhanced antigen presentation and promotes rF1-V10-mediated protection against Y. pestis infection. This manganese-based nanoparticle vaccine represents a valuable strategy for combating fatal bacterial pneumonia.


Subject(s)
Plague Vaccine , Plague , Pneumonia, Bacterial , Vaccines , Mice , Animals , Plague/prevention & control , Nanovaccines , Manganese , Antigens, Bacterial/genetics , Pneumonia, Bacterial/prevention & control , Adjuvants, Immunologic , Bacterial Proteins
3.
Front Physiol ; 14: 1113524, 2023.
Article in English | MEDLINE | ID: mdl-37153217

ABSTRACT

Introduction: Amplitude spectrum area (AMSA) is a well-established measure than can predict defibrillation outcome and guiding individualized resuscitation of ventricular fibrillation (VF) patients. However, accurate AMSA can only be calculated during cardiopulmonary resuscitation (CPR) pause due to artifacts produced by chest compression (CC). In this study, we developed a real-time AMSA estimation algorithm using a convolutional neural network (CNN). Methods: Data were collected from 698 patients, and the AMSA calculated from the uncorrupted signals served as the true value for both uncorrupted and the adjacent corrupted signals. An architecture consisting of a 6-layer 1D CNN and 3 fully connected layers was developed for AMSA estimation. A 5-fold cross-validation procedure was used to train, validate and optimize the algorithm. An independent testing set comprised of simulated data, real-life CC corrupted data, and preshock data was used to evaluate the performance. Results: The mean absolute error, root mean square error, percentage root mean square difference and correlation coefficient were 2.182/1.951 mVHz, 2.957/2.574 mVHz, 22.887/28.649% and 0.804/0.888 for simulated and real-life testing data, respectively. The area under the receiver operating characteristic curve regarding predicting defibrillation success was 0.835, which was comparable to that of 0.849 using the true value of the AMSA. Conclusions: AMSA can be accurately estimated during uninterrupted CPR using the proposed method.

4.
PLoS Comput Biol ; 19(3): e1011021, 2023 03.
Article in English | MEDLINE | ID: mdl-37000844

ABSTRACT

Although some methods for estimating the instantaneous reproductive number during epidemics have been developed, the existing frameworks usually require information on the distribution of the serial interval and/or additional contact tracing data. However, in the case of outbreaks of emerging infectious diseases with an unknown natural history or undetermined characteristics, the serial interval and/or contact tracing data are often not available, resulting in inaccurate estimates for this quantity. In the present study, a new framework was specifically designed for joint estimates of the instantaneous reproductive number and serial interval. Concretely, a likelihood function for the two quantities was first introduced. Then, the instantaneous reproductive number and the serial interval were modeled parametrically as a function of time using the interpolation method and a known traditional distribution, respectively. Using the Bayesian information criterion and the Markov Chain Monte Carlo method, we ultimately obtained their estimates and distribution. The simulation study revealed that our estimates of the two quantities were consistent with the ground truth. Seven data sets of historical epidemics were considered and further verified the robust performance of our method. Therefore, to some extent, even if we know only the daily incidence, our method can accurately estimate the instantaneous reproductive number and serial interval to provide crucial information for policymakers to design appropriate prevention and control interventions during epidemics.


Subject(s)
Epidemics , Bayes Theorem , Disease Outbreaks , Computer Simulation , Likelihood Functions
5.
J Nutr Biochem ; 107: 109039, 2022 09.
Article in English | MEDLINE | ID: mdl-35533902

ABSTRACT

Liver fibrosis is a pathological process as a result of intrahepatic deposition of excessive ECM. EMT of hepatocytes and activation of HSCs both play important roles in the etiology of liver fibrosis. Here, we found that limonin repressed TGF-ß-induced EMT in AML-12 hepatocytes and activation of LX-2 HSCs. Limonin suppressed TGF-ß-provoked Smad2/3 C-terminal phosphorylation and subsequent nuclear translocation. However, limonin exerted few effects on Smad2/3 phosphorylation atlinker region. Mechanistically, limonin increased Smad7 in both AML-12 and LX-2 cells. Knockdown of Smad7 abrogated inhibitory effects of limonin on TGF-ß-induced changes in both two cells. Further studies revealed that limonin upregulated Smad7 and declined C-terminal phosphorylation and nuclear translocation of Smad2/3 to alleviate mouse CCl4-induced liver fibrosis. Our findings indicated that limonin inhibits TGF-ß-induced EMT of hepatocytes and activation of HSCs in vitro and CCl4-induced liver fibrosis in mice. Upregulated Smad7 which suppresses Smad2/3-dependent gene transcription is implicated in the hepatoprotective activity of limonin.


Subject(s)
Leukemia, Myeloid, Acute , Limonins , Animals , Hepatic Stellate Cells/metabolism , Hepatocytes/metabolism , Leukemia, Myeloid, Acute/pathology , Limonins/pharmacology , Liver/metabolism , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver Cirrhosis/pathology , Mice , Signal Transduction , Smad Proteins/metabolism , Transforming Growth Factor beta/metabolism , Transforming Growth Factor beta1/pharmacology
6.
Interdiscip Sci ; 14(3): 652-668, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35426544

ABSTRACT

Identifying key factors from observational data is important for understanding complex phenomena in many disciplines, including biomedical sciences and biology. However, there are still some limitations in practical applications, such as severely nonlinear input-output relationships and highly skewed output distributions. To acquire more reliable sensitivity analysis (SA) results in these extreme cases, inspired by the weighted k-nearest neighbors algorithm, we propose a new method called adaptive weighted neighbors (AWN). AWN makes full use of the information contained in all training samples instead of limited samples and automatically gives more weight to nearby samples. Then, the bootstrap technique and Jansen's method are used to obtain reliable SA results based on AWN. We demonstrate the performance and accuracy of AWN by analyzing various biological and biomedical data sets, three simulated examples and two case studies, showing that it can effectively overcome the above limitations. We therefore expect it to be a complementary approach for SA.


Subject(s)
Algorithms , Cluster Analysis
7.
J Am Heart Assoc ; 11(6): e023378, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35261264

ABSTRACT

Background Myocardial dysfunction is a critical cause of post-cardiac arrest hemodynamic instability and circulatory failure that may lead to early mortality after resuscitation. Trimetazidine is a metabolic agent that has been demonstrated to provide protective effects in myocardial ischemia. However, whether trimetazidine protects against postresuscitation myocardial dysfunction is unknown. Methods and Results Cardiopulmonary resuscitation was initiated after 8 minutes of untreated ventricular fibrillation in Sprague-Dawley rats. Animals were randomized to 4 groups immediately after resuscitation (n=15/group): (1) normothermia control (NTC); (2) targeted temperature management; (3) trimetazidine-normothermia; (4) trimetazidine-targeted temperature management. TMZ was administered at a single dose of 10 mg/kg in rats with trimetazidine. The body temperature was maintained at 34.0°C for 2 hours and then rewarmed to 37.5°C in rats with targeted temperature management. Postresuscitation hemodynamics, 96-hours survival, and pathological analysis were assessed. Heart tissues and blood samples of additional rats (n=6/group) undergoing the same experimental procedure were collected to measure myocardial injury, inflammation and oxidative stress-related biomarkers with ELISA-based quantification assays. Compared with normothermia control, tumor necrosis factor-α, and cardiac troponin-I were significantly reduced, whereas the left ventricular ejection fraction and 96-hours survival rates were significantly improved in the 3 experimental groups. Furthermore, inflammation and oxidative stress-related biomarkers together with collagen volume fraction were significantly decreased in rats undergoing postresuscitation interventions. Conclusions Trimetazidine significantly alleviates postresuscitation myocardial dysfunction and improves survival by decreasing oxidative stress and inflammation in a ventricular fibrillation rat model. A single dose of trimetazidine administrated immediately after resuscitation can effectively improve cardiac function, whether used alone or combined with targeted temperature management.


Subject(s)
Cardiomyopathies , Cardiopulmonary Resuscitation , Trimetazidine , Animals , Rats , Biomarkers , Cardiopulmonary Resuscitation/methods , Inflammation , Rats, Sprague-Dawley , Stroke Volume , Trimetazidine/pharmacology , Trimetazidine/therapeutic use , Ventricular Fibrillation/etiology , Ventricular Fibrillation/prevention & control , Ventricular Function, Left
8.
Infect Genet Evol ; 100: 105270, 2022 06.
Article in English | MEDLINE | ID: mdl-35301168

ABSTRACT

OBJECTIVES: Although COVID-19 has been controlled in China, the risk of invasion of imported cases remains. We aimed to characterize the impact of the number of imported cases and the implementation of first-level emergency response (FLER) policy. METHODS: A SCQIHR switching model was constructed and verified by the complete phased data of COVID-19 in Chongqing in 2020. Then it was used to investigate the impact of the number of imported cases and the timing of FLER. Lastly, it was evaluated by three actual scenarios in Chongqing in 2021. RESULTS: The proposed model can fit the multidimensional time series well. After the implementation of FLER, the mean effective reproduction number, contact rate and misdetection rate were decreased significantly, but the quarantine rate for close contacts and isolation rate for non-hospitalized infectious cases were increased significantly. The peaks of quarantined close contacts and hospitalized infectious cases increased linearly with the increase of the number of imported cases and the lag of FLER time, which was verified by three actual scenarios in Chongqing in 2021. CONCLUSIONS: These findings can provide guidance for local public health policy-making and allocation of medical resources, reduce the impact of COVID-19 on the local population.


Subject(s)
COVID-19 , Basic Reproduction Number , COVID-19/epidemiology , China/epidemiology , Humans , Quarantine , SARS-CoV-2
9.
Trop Med Infect Dis ; 8(1)2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36668924

ABSTRACT

Varicella (chickenpox) is highly contagious among children and frequently breaks out in schools. In this study, we developed a dynamic compartment model to explore the optimal schedule for varicella vaccination in Jiangsu Province, China. A susceptible-infected-recovered (SIR) model was proposed to simulate the transmission of varicella in different age groups. The basic reproduction number was computed by the kinetic model, and the impact of three prevention factors was assessed through the global sensitivity analysis. Finally, the effect of various vaccination scenarios was qualitatively evaluated by numerical simulation. The estimated basic reproduction number was 1.831 ± 0.078, and the greatest contributor was the 5-10 year-old group (0.747 ± 0.042, 40.80%). Sensitivity analysis indicated that there was a strong negative correlation between the second dose vaccination coverage rate and basic reproduction number. In addition, we qualitatively found that the incidence would significantly decrease as the second dose vaccine coverage expands. The results suggest that two-dose varicella vaccination should be mandatory, and the optimal age of second dose vaccination is the 5-10 year-old group. Optimal vaccination time, wide vaccine coverage along with other measures, could enhance the effectiveness of prevention and control of varicella in China.

10.
Food Funct ; 12(22): 11686-11703, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34730139

ABSTRACT

Piperine (PIP) is an alkaloid derived from peppercorns. Herein, we assessed its effects on hepatocyte EMT and HSC activation in vitro and CCl4-elicited liver fibrosis in mice. Further experiments were performed to unveil the molecular mechanisms underlying the hepatoprotective activity of PIP. We found that PIP inhibited TGF-ß1-provoked AML-12 hepatocyte EMT and LX-2 HSC activation. Mechanistically, in AML-12 and LX-2 cells, PIP evoked Nrf2 nuclear translocation and increased transcriptions of Nrf2-responsive antioxidative genes. These events decreased TGF-ß1-induced production of ROS. Moreover, PIP increased the expression of Smad7, suppressed phosphorylation and nuclear translocation of Smad2/3, and decreased the transcriptions of Smad2/3-downstream genes. Knockdown of Nrf2 abrogated the protective activity of PIP against TGF-ß1. Modulatory effects of PIP on the TGF-ß1/Smad cascade were also crippled, which suggested that activation of Nrf2 played critical roles in the regulatory effects of PIP on TGF-ß1/Smad signaling. Experiments in vivo unveiled that PIP ameliorated mouse liver fibrosis provoked by CCl4. PIP modulated the intrahepatic contents of the markers of EMT and HSC activation. In mouse livers, PIP activated Nrf2 signaling and reduced Smad2/3-dependent gene transcriptions. Our findings collectively suggested PIP as a new chemical entity with the capacity of alleviating liver fibrosis. The activation of the Nrf2 cascade and subsequent suppression of the TGF-ß1/Smad axis are implicated in the hepatoprotective activity of PIP.


Subject(s)
Alkaloids/pharmacology , Benzodioxoles/pharmacology , Epithelial-Mesenchymal Transition/drug effects , Hepatocytes/drug effects , Liver Cirrhosis/metabolism , NF-E2-Related Factor 2/metabolism , Piperidines/pharmacology , Polyunsaturated Alkamides/pharmacology , Animals , Carbon Tetrachloride/adverse effects , Cell Line , Hepatocytes/metabolism , Humans , Liver/drug effects , Liver/metabolism , Mice , Smad Proteins/metabolism , Transforming Growth Factor beta1/metabolism
11.
Phytomedicine ; 93: 153746, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34634746

ABSTRACT

BACKGROUND AND PURPOSE: Liver fibrosis constitutes a pathologic condition resulting in a series of advanced liver diseases. Oleanane-type saponins are distinctive active constituents in the medicinal plant Panax japonicus C. A. Mey (P. japonicus). Herein, we assessed protective effects of a characterized saponin extract of rhizomes of P. japonicus (SEPJ) on hepatocyte EMT and HSC activation in vitro and liver fibrosis in mice. We also investigated molecular mechanisms underlying the hepatoprotective activity of SEPJ. METHODS: EMT of AML-12 hepatocytes was evaluated by observing morphology of cells and quantifying EMT marker proteins. Activation of LX-2 HSCs was assessed via scratch assay, transwell assay, and EdU-incorporation assay, and by quantifying activation marker proteins. Liver fibrosis in mice was evaluated by HE, SR, and Masson staining, and by measuring related serum indicators. Immunoblotting and RT-PCR were performed to study mechanisms underlying the action of SEPJ. RESULTS: SEPJ inhibited TGF-ß-induced EMT in AML-12 hepatocytes and activation of LX-2 HSCs. SEPJ elevated Akt phosphorylation at Ser473 and GSK3ß phosphorylation at Ser9 in these cells, giving rise to a descent of the catalytic activity of GSK3ß. These events increased levels of both total and nuclear Nrf2 protein and upregulated expressions of Nrf2-responsive antioxidative genes. In addition, enhanced phosphorylation of Akt and GSK3ß acted upstream of SEPJ-mediated activation of Nrf2. Knockdown of Nrf2 or inhibition of Akt diminished the protective activity of SEPJ against TGF-ß in both AML-12 and LX-2 cells. Our further in vivo experiments revealed that SEPJ imposed a considerable alleviation on CCl4-provoked mouse liver fibrosis. Moreover, hepatic Akt/GSK3ß/Nrf2 cascade were potentiated by SEPJ. Taken together, our results unveiled that SEPJ exerted protective effects against fibrogenic cytokine TGF-ß in vitro and ameliorated liver fibrosis in mice. Mechanistically, SEPJ regulated the Akt/GSK3ß/Nrf2 signaling which subsequently enhanced intracellular antioxidative capacity. CONCLUSIONS: SEPJ inhibits hepatocyte EMT and HSC activation in vitro and alleviates liver fibrosis in mice. Modulation of the Akt/GSK3ß/Nrf2 cascade attributes to its hepatoprotective effects. Our findings support a possible application of SEPJ in the control of liver fibrosis.


Subject(s)
Panax , Saponins , Animals , Glycogen Synthase Kinase 3 beta , Hepatic Stellate Cells/pathology , Hepatocytes , Liver/pathology , Liver Cirrhosis/chemically induced , Liver Cirrhosis/drug therapy , Liver Cirrhosis/pathology , Mice , NF-E2-Related Factor 2 , Plant Extracts/pharmacology , Proto-Oncogene Proteins c-akt , Saponins/pharmacology
12.
Ann Transl Med ; 9(8): 619, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33987317

ABSTRACT

BACKGROUND: Amplitude spectrum area (AMSA) calculated from ventricular fibrillation (VF) can be used to monitor the effectiveness of chest compression (CC) and optimize the timing of defibrillation. However, reliable AMSA can only be obtained during CC pause because of artifacts. In this study, we sought to develop a method for estimating AMSA during cardiopulmonary resuscitation (CPR) using only the electrocardiogram (ECG) waveform. METHODS: Intervals of 8 seconds ECG and CC-related references, including 4 seconds during CC and an adjacent 4 seconds without CC, were collected before 1,008 defibrillation shocks from 512 out-of-hospital cardiac arrest patients. Signal quality was analyzed based on the irregularity of autocorrelation of VF. If signal quality index (SQI) was high, AMSA would be calculated from the original signal. Otherwise, CC-related artifacts would be constructed and suppressed using the least mean square filter from VF before calculation of AMSA. The algorithm was optimized using 480 training shocks and evaluated using 528 independent testing shocks. RESULTS: Overall, CC resulted in lower SQI [0.15 (0.04-0.61) with CC vs. 0.75 (0.61-0.83) without CC, P<0.01] and higher AMSA [11.2 (7.7-16.2) with CC vs. 7.2 (4.9-10.6) mVHz without CC, P<0.01] values. The predictive accuracy (49.2% vs. 66.5%, P<0.01) and area under the receiver operating characteristic curve (AUC) (0.647 vs. 0.734, P<0.01) were significantly decreased during CC. Using the proposed method, the estimated AMSA was 7.1 (5.0-15.2) mVHz, the predictive accuracy was 67.0% and the AUC was 0.713, which were all comparable with those calculated without CC. CONCLUSIONS: Using the signal quality-based artifact suppression method, AMSA can be reliably estimated and continuously monitored during CPR.

13.
Brain Stimul ; 14(2): 407-416, 2021.
Article in English | MEDLINE | ID: mdl-33618015

ABSTRACT

BACKGROUND: Non-shockable rhythms present an increasing proportion of out-of-hospital cardiac arrest (CA) patients, but are associated with poor prognosis and received limited therapeutic effect of targeted temperature management (TTM). Previous study showed repetitive anodal transcranial direct current stimulation (tDCS) improved neurological outcomes in animals with ventricular fibrillation. Here, we examine the effectiveness of tDCS on neurological recovery and the potential mechanisms in a rat model of asphyxial CA. METHOD: Cardiopulmonary resuscitation was initiated after 5 min of untreated asphyxial CA. Animals were randomized to three experimental groups immediately after successful resuscitation (n = 12/group, 6 males): no-treatment control (NTC) group, TTM group, and tDCS group. Post resuscitation hemodynamics, quantitative electroencephalogram (EEG), neurological deficit score, and 96-h survival were evaluated. Brain tissues of additional animals undergoing same experimental procedure was harvested for enzyme-linked immunoassay-based quantification assays of neuroplasticity-related biomarkers and compared with the sham-operated rats (n = 6/group). RESULTS: We observed that after resuscitation tDCS-treated animals exhibited significantly higher mean arterial pressure and left ventricular ejection fraction than NTC group and showed greatly improved EEG characteristics including weighted-permutation entropy and gamma band power, and neurologic deficit scores and 96-h survival rates compared to NTC and TTM groups. Furthermore, neuroplastic biomarkers including microtubule-associated protein 2, growth-associated protein 43, postsynaptic density protein 95 and synaptophysin, were significantly higher in tDCS group when compared with NTC and TTM groups. CONCLUSION: In this rat model of asphyxial CA, repetitive anodal tDCS commenced after resuscitation improved neurological recovery, and it may exert a neuroprotective effect by preserving the neuroplasticity.


Subject(s)
Heart Arrest , Transcranial Direct Current Stimulation , Animals , Humans , Male , Rats , Heart Arrest/complications , Heart Arrest/therapy , Neuronal Plasticity , Stroke Volume , Ventricular Function, Left
14.
J Am Heart Assoc ; 9(19): e016730, 2020 10 20.
Article in English | MEDLINE | ID: mdl-32964774

ABSTRACT

Background Oxygen plays a pivotal role in cardiopulmonary resuscitation (CPR) and postresuscitation intervention for cardiac arrest. However, the optimal method to reoxygenate patients has not been determined. This study investigated the effect of timing of hyperoxygenation on neurological outcomes in cardiac arrest/CPR rats treated with targeted temperature management. Methods and Results After induction of ventricular fibrillation, male Sprague-Dawley rats were randomized into 4 groups (n=16/group): (1) normoxic control; (2) O2_CPR, ventilated with 100% O2 during CPR; (3) O2_CPR+postresuscitation, ventilated with 100% O2 during CPR and the first 3 hours of postresuscitation; and (4) O2_postresuscitation, ventilated with 100% O2 during the first 3 hours of postresuscitation. Targeted temperature management was induced immediately after resuscitation and maintained for 3 hours in all animals. Postresuscitation hemodynamics, neurological recovery, and pathological analysis were assessed. Brain tissues of additional rats undergoing the same experimental procedure were harvested for ELISA-based quantification assays of oxidative stress-related biomarkers and compared with the sham-operated rats (n=6/group). We found that postresuscitation mean arterial pressure and quantitative electroencephalogram activity were significantly increased, whereas astroglial protein S100B, degenerated neurons, oxidative stress-related biomarkers, and neurologic deficit scores were significantly reduced in the O2_CPR+postresuscitation group compared with the normoxic control group. In addition, 96-hour survival rates were significantly improved in all of the hyperoxygenation groups. Conclusions In this cardiac arrest/CPR rat model, hyperoxygenation coupled with targeted temperature management attenuates ischemia/reperfusion-induced injuries and improves survival rates. The beneficial effects of high-concentration oxygen are timing and duration dependent. Hyperoxygenation commenced with CPR, which improves outcomes when administered during hypothermia.


Subject(s)
Cardiopulmonary Resuscitation/methods , Heart Arrest , Hypothermia, Induced/methods , Neuroprotection , Oxygen Inhalation Therapy/methods , Animals , Duration of Therapy , Electroencephalography/methods , Heart Arrest/metabolism , Heart Arrest/therapy , Outcome Assessment, Health Care , Oxidative Stress , Oxygen Consumption , Rats , Rats, Sprague-Dawley , Reperfusion Injury/metabolism , Reperfusion Injury/prevention & control , Time-to-Treatment
15.
Brain Stimul ; 12(3): 659-667, 2019.
Article in English | MEDLINE | ID: mdl-30611705

ABSTRACT

BACKGROUND: Transcranial direct current stimulation (tDCS) modulates neuronal activity and is a potential therapeutic tool for many neurological diseases. However, its beneficial effects on post cardiac arrest syndrome remains uncertain. OBJECTIVE/HYPOTHESIS: We investigated the effects of repetitive anodal tDCS on neurological outcome and survival in a ventricular fibrillation (VF) cardiac arrest rat model. METHODS: Cardiopulmonary resuscitation was initiated after 6 min of VF in 36 Sprague-Dawley rats. The animals were randomized into three groups immediately after resuscitation (n = 12 each): no-treatment control (NTC) group, targeted temperature management (TTM) group, and tDCS group. For tDCS, 1 mA anodal tDCS was applied on the dorsal scalp for 0.5 h. The stimulation was repeated for four sessions with 1-h resting interval under normothermia. Post-resuscitation hemodynamic, cerebral, and myocardial injuries, 96-h neurological outcome, and survival were evaluated. RESULTS: Compared with the NTC group, post-resuscitation serum astroglial protein S100 beta and cardiac troponin T levels and 96-h neuronal and myocardial damage scores were markedly reduced in the tDCS and TTM groups. Myocardial ejection fraction, neurological deficit score, and 96-h survival rate were also significantly better for the tDCS and TTM groups. The period of post-resuscitation arrhythmia with hemodynamic instability was considerably shorter in the tDCS group, but no differences were observed in neurological outcome and survival between the tDCS and TTM groups. CONCLUSIONS: In this cardiac arrest rat model, repeated anodal tDCS commenced after resuscitation improves 96-h neurological outcome and survival to an extent comparable to TTM by attenuating post-resuscitation cerebral and cardiac injuries.


Subject(s)
Cardiopulmonary Resuscitation/methods , Heart Arrest/therapy , Transcranial Direct Current Stimulation/methods , Ventricular Fibrillation/therapy , Animals , Heart Arrest/etiology , Male , Rats , Rats, Sprague-Dawley , Ventricular Fibrillation/complications
16.
Am J Emerg Med ; 36(12): 2242-2248, 2018 12.
Article in English | MEDLINE | ID: mdl-29661665

ABSTRACT

OBJECTIVE: Early and reliable prediction of neurological outcome remains a challenge for comatose survivors of cardiac arrest (CA). The purpose of this study was to evaluate the predictive ability of EEG, heart rate variability (HRV) features and the combination of them for outcome prognostication in CA model of rats. METHODS: Forty-eight male Sprague-Dawley rats were randomized into 6 groups (n=8 each) with different cause and duration of untreated arrest. Cardiopulmonary resuscitation was initiated after 5, 6 and 7min of ventricular fibrillation or 4, 6 and 8min of asphyxia. EEG and ECG were continuously recorded for 4h under normothermia after resuscitation. The relationships between features of early post-resuscitation EEG, HRV and 96-hour outcome were investigated. Prognostic performances were evaluated using the area under receiver operating characteristic curve (AUC). RESULTS: All of the animals were successfully resuscitated and 27 of them survived to 96h. Weighted-permutation entropy (WPE) and normalized high frequency (nHF) outperformed other EEG and HRV features for the prediction of survival. The AUC of WPE was markedly higher than that of nHF (0.892 vs. 0.759, p<0.001). The AUC was 0.954 when WPE and nHF were combined using a logistic regression model, which was significantly higher than the individual EEG (p=0.018) and HRV (p<0.001) features. CONCLUSIONS: Earlier post-resuscitation HRV provided prognostic information complementary to quantitative EEG in the CA model of rats. The combination of EEG and HRV features leads to improving performance of outcome prognostication compared to either EEG or HRV based features alone.


Subject(s)
Asphyxia/physiopathology , Electroencephalography , Heart Arrest/therapy , Heart Rate , Ventricular Fibrillation/therapy , Animals , Asphyxia/complications , Cardiopulmonary Resuscitation , Heart Arrest/physiopathology , Male , Prognosis , ROC Curve , Rats , Rats, Sprague-Dawley , Ventricular Fibrillation/physiopathology
17.
Neurocrit Care ; 28(2): 247-256, 2018 04.
Article in English | MEDLINE | ID: mdl-28484928

ABSTRACT

BACKGROUND: Quantitative electroencephalogram (EEG) analysis has shown promising results in studying brain injury and functional recovery after cardiac arrest (CA). However, whether the quantitative characteristics of EEG, as potential indicators of neurological prognosis, are influenced by CA causes is unknown. The purpose of this study was designed to compare the quantitative characteristics of early post-resuscitation EEG between asphyxial CA (ACA) and ventricular fibrillation CA (VFCA) in rats. METHODS: Thirty-two Sprague-Dawley rats of both sexes were randomized into either ACA or VFCA group. Cardiopulmonary resuscitation was initiated after 5-min untreated CA. Characteristics of early post-resuscitation EEG were compared, and the relationships between quantitative EEG features and neurological outcomes were investigated. RESULTS: Compared with VFCA, serum level of S100B, neurological deficit score and brain histopathologic damage score were dramatically higher in the ACA group. Quantitative measures of EEG, including onset time of EEG burst, time to normal trace, burst suppression ratio, and information quantity, were significantly lower for CA caused by asphyxia and correlated with the 96-h neurological outcome and survival. CONCLUSIONS: Characteristics of earlier post-resuscitation EEG differed between cardiac and respiratory causes. Quantitative measures of EEG not only predicted neurological outcome and survival, but also have the potential to stratify CA with different causes.


Subject(s)
Asphyxia/complications , Cardiopulmonary Resuscitation , Electroencephalography , Heart Arrest , Nervous System Diseases/diagnosis , Ventricular Fibrillation/complications , Animals , Disease Models, Animal , Female , Heart Arrest/complications , Heart Arrest/etiology , Heart Arrest/therapy , Male , Nervous System Diseases/etiology , Random Allocation , Rats , Rats, Sprague-Dawley
18.
Shock ; 50(6): 689-695, 2018 12.
Article in English | MEDLINE | ID: mdl-29280927

ABSTRACT

BACKGROUND: Postcardiac arrest syndrome is the consequence of whole-body ischemia-reperfusion events that lead to multiple organ failure and eventually to death. Recent animal studies demonstrated that inhalation of hydrogen greatly mitigates postresuscitation myocardial dysfunction and brain injury. However, the influence of underlying heart disease on the efficacy of hydrogen is still unknown. In the present study, we investigated the effects of hydrogen inhalation on neurological outcome and survival in a cardiac arrest model of spontaneously hypertensive rat (SHR). METHODS: Cardiopulmonary resuscitation was initiated after 4 min of untreated ventricular fibrillation in 40 SHRs. Immediately after successful resuscitation, animals were randomized to be ventilated with 98% oxygen and 2% nitrogen under normothermia (Ctrl), 2% nitrogen under hypothermia (TH), 2% hydrogen under normothermia (H2), or 2% hydrogen under hypothermia (H2+TH) for 2 h. Hypothermia was maintained at 33°C for 2 h. Animals were observed up to 96 h for assessment of survival and neurologic recovery. RESULTS: No statistical differences in baseline measurements were observed among groups and all the animals were successfully resuscitated. Compared with Ctrl, serum cardiac troponin T measured at 5 h and myocardial damage score measured at 96 h after resuscitation were markedly reduced in H2, TH, and H2+TH groups. Compared with Ctrl and TH, astroglial protein S100 beta measured during the earlier postresuscitation period, and neurological deficit score and neuronal damage score measured at 96 h were considerably lower in both H2 and H2+TH groups. Ninety-six hours survival rates were significantly higher in the H2 (80.0%) and H2+TH (90.0%) groups than TH (30.0%) and to Ctrl (30.0%). CONCLUSIONS: Hydrogen inhaling was superior to mild hypothermia for improving neurological outcome and survival in cardiac arrest and resuscitation model of systemic hypertension rats.


Subject(s)
Heart Arrest/drug therapy , Heart Arrest/therapy , Hydrogen/therapeutic use , Hypothermia, Induced , Administration, Inhalation , Animals , Cardiopulmonary Resuscitation , Disease Models, Animal , Male , Rats , Rats, Inbred SHR , Treatment Outcome
19.
Sensors (Basel) ; 17(4)2017 Mar 25.
Article in English | MEDLINE | ID: mdl-28346346

ABSTRACT

Terrain-aided navigation is a potentially powerful solution for obtaining submerged position fixes for autonomous underwater vehicles. The application of terrain-aided navigation with high-accuracy inertial navigation systems has demonstrated meter-level navigation accuracy in sea trials. However, available sensors may be limited depending on the type of the mission. Such limitations, especially for low-grade navigation sensors, not only degrade the accuracy of traditional navigation systems, but further impact the ability to successfully employ terrain-aided navigation. To address this problem, a tightly-coupled navigation is presented to successfully estimate the critical sensor errors by incorporating raw sensor data directly into an augmented navigation system. Furthermore, three-dimensional distance errors are calculated, providing measurement updates through the particle filter for absolute and bounded position error. The development of the terrain aided navigation system is elaborated for a vehicle equipped with a non-inertial-grade strapdown inertial navigation system, a 4-beam Doppler Velocity Log range sensor and a sonar altimeter. Using experimental data for navigation performance evaluation in areas with different terrain characteristics, the experiment results further show that the proposed method can be successfully applied to the low-cost AUVs and significantly improves navigation performance.

20.
Resuscitation ; 111: 48-54, 2017 02.
Article in English | MEDLINE | ID: mdl-27951401

ABSTRACT

BACKGROUND: Quantitative analysis of ventricular fibrillation (VF), such as amplitude spectral area (AMSA), predicts shock outcomes. However, there is no uniform definition of shock/cardiopulmonary resuscitation (CPR) success in out-of-hospital cardiac arrest (OHCA). The objective of this study is to investigate post-shock rhythm variations and the impact of shock/CPR success definition on the predictability of AMSA. METHODS: A total of 554 shocks from 257 OHCA patients with VF as initial rhythm were analyzed. Post-shock rhythms were analyzed every 5s up to 120s and annotated as VF, asystole (AS) and organized rhythm (OR) at serial time intervals. Three shock/CPR success definitions were used to evaluate the predictability of AMSA: (1) termination of VF (ToVF); (2) return of organized electrical activity (ROEA); (3) return of potentially perfusing rhythm (RPPR). RESULTS: Rhythm changes occurred after 54.5% (N=302) of shocks and 85.8% (N=259) of them occurred within 60s after shock delivery. The observed post-shock rhythm changes were (1) from AS to VF (24.9%), (2) from OR to VF (16.1%), and (3) from AS to OR (12.1%). The area under the receiver operating characteristic curve (AUC) for AMSA as a predictor of shock/CPR success reached its maximum 60s post-shock. The AUC was 0.646 for ToVF, 0.782 for ROEA, and 0.835 for RPPR (p<0.001) respectively. CONCLUSIONS: Post-shock rhythm is unstable in the first minute after the shock. The predictability of AMSA varies depending on the definition of shock/CPR success and performs best with the return of potentially perfusing rhythm endpoint for OHCA.


Subject(s)
Cardiopulmonary Resuscitation , Electric Countershock , Ventricular Fibrillation/physiopathology , Ventricular Fibrillation/therapy , Forecasting , Humans , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...