Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 15(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38232012

ABSTRACT

The physical and mechanical properties of novel bio-based polymer blends of polylactic acid (PLA), poly(butylene succinate) (PBS), and poly (butylene adipate-co-terephthalate) (PBAT) with various added amounts of nanohydroxyapatite (nHA) were investigated in this study. The formulations of PLA/PBS/PBAT/nHA blends were divided into two series, A and B, containing 70 or 80 wt% PLA, respectively. Samples of four specimens per series were prepared using a twin-screw extruder, and different amounts of nHA were added to meet the regeneration needs of bone graft materials. FTIR and XRD analyses were employed to identify the presence of each polymer and nHA in the various blends. The crystallization behavior of these blends was examined using DSC. Tensile and impact strength tests were performed on all samples to screen feasible formulations of polymer blends for bone graft material applications. Surface morphology analyses were conducted using SEM, and the dispersion of nHA particles in the blends was further tested using TEM. The added nHA also served as a nucleating agent aimed at improving the crystallinity and mechanical properties of the blends. Through the above analyses, the physical and mechanical properties of the polymer blends are reported and the most promising bone graft material formulations are suggested. All blends were tested for thermal degradation analysis using TGA and thermal stability was confirmed. The water absorption experiments carried out in this study showed that the addition of nHA could improve the hydrophilicity of the blends.

2.
ACS Nano ; 16(5): 8273-8282, 2022 May 24.
Article in English | MEDLINE | ID: mdl-35506539

ABSTRACT

Quantum efficiencies remain a critical issue for general applications of semiconducting polymers in optoelectronics and others. In this work, we demonstrate that nearly 100% quantum efficiencies (η's) in thin solid films can be reached when the polymer molecules are mechanically stretched into molecular confinement. We selected three conjugated polymers of varied backbone stiffness and interchain coupling, prepared in both diluted and pristine states. All of the polymers when highly diluted (c = 0.1 wt %) exhibited massive η increases after stretching to very large strains (∼300-500%) via micronecking, with the rigid polyfluorene (PFO) and semirigid MEH-PPV both manifesting η ≈ 90%, while the most flexible yet regioregular polythiophene (P3HT-rr) exhibited a 10-fold increase to ∼21%. In the pristine state, molecular aggregation and interchain coupling curtail development of the molecular confinement, but the large-strain deformation still enhances η's significantly, to ∼90% (PFO) and ∼55% (MEH-PPV) despite no increases for the crystalline P3HT-rr. Moreover, upon substitution by a bulkier side-group to reduce interchain coupling, the pristine films of polythiophene (P3EHT) exhibited a ∼3-fold increase of η after the stretching. The nearly 100% of η's in fully stretched molecules indicates that the in situ self-trapping occurring via sub-picosecond backbone interactions can be mostly responsible for energy dissipations and quite suppressible by segmental stress control. The mechanical confinement effects also indicate the fundamental role of molecular mechanics during stabilization and migration of photoexcited charges.

3.
Polymers (Basel) ; 13(24)2021 Dec 14.
Article in English | MEDLINE | ID: mdl-34960923

ABSTRACT

The blindness caused by cornea diseases has exacerbated many patients all over the world. The disadvantages of using donor corneas may cause challenges to recovering eye sight. Developing artificial corneas with biocompatibility may provide another option to recover blindness. The techniques of making individual artificial corneas that fit the biometric parameters for each person can be used to help these patients effectively. In this study, artificial corneas with different shapes (spherical, aspherical, and biconic shapes) are designed and they could be made by two different hydrogel polymers that form an interpenetrating polymer network for their excellent mechanical strength. Two designed cases for the artificial corneas are considered in the simulations: to optimize the artificial cornea for patients who still wear glasses and to assume that the patient does not wear glasses after transplanting with the optimized artificial cornea. The results show that the artificial corneas can efficiently decrease the imaging blur. Increasing asphericity of the current designed artificial corneas can be helpful for the imaging corrections. The differences in the optical performance of the optimized artificial corneas by using different materials are small. It is found that the optimized artificial cornea can reduce the high order aberrations for the second case.

4.
Micromachines (Basel) ; 11(1)2019 Dec 20.
Article in English | MEDLINE | ID: mdl-31877656

ABSTRACT

In this study, nanopiezoelectric devices based on ZnO nanorod array/conducting polymers are fabricated for wearable power generation application. To replace the inorganic rigid indium-tin oxide (ITO) conducting coating commonly used in the nanogenerator devices, a series of flexible polyaniline-based conducting copolymers underlying the perpendicularly-oriented ZnO nanorod arrays has been synthesized with improved electric conductivity by the copolymerization of aniline and 3,4-ethylenedioxythiophene (EDOT) monomers in order to optimize the piezoelectric current collection efficiency of the devices. It is found that significantly higher conductivity can be obtained by small addition of EDOT monomer into aniline monomer solution using an in-situ oxidative polymerization method for the synthesis of the copolymer coatings. The highest conductivity of aniline-rich copolymer is 65 S/cm, which is 2.5 times higher than that for homopolymer polyaniline coating. Subsequently, perpendicularly-oriented ZnO nanorod arrays are fabricated on the polyaniline-based copolymer substrates via a ZnO nanoparticle seeded hydrothermal fabrication process. The surface morphology, crystallinity, orientation, and crystal size of the synthesized ZnO nanorod arrays are fully examined with various synthesis parameters for copolymer coatings with different monomer compositions. It is found that piezoelectric current generated from the devices is at least five times better for the device with improved electric conductivity of the copolymer and the dense formation of ZnO nanorod arrays on the coating. Therefore, these results demonstrate the advantage of using flexible π-conjugated copolymer films with enhanced conductivity to further improve piezoelectric performance for future wearable energy harvesting application based on all wet chemical coating processes.

5.
Polymers (Basel) ; 11(3)2019 Mar 06.
Article in English | MEDLINE | ID: mdl-30960415

ABSTRACT

Core-shell microspheres have been applied in various research areas and, in particular, they are used in the generation of photonic nanojets with suitable design for photonic applications. The photonic nanojet is a narrow and focused high-intensity light beam emitting from the shadow-side of microspheres with tunable effective length, thus enabling its applications in biosensing technology. In this paper, we numerically studied the photonic nanojets brought about from biocompatible hydrogel core-shell microspheres with different optical properties. It was found that the presence of the shell layer can significantly affect the characteristics of the photonic nanojets, such as the focal distance, intensity, effective length, and focal size. Generally speaking, the larger the core-shell microspheres, the longer the focal distance, the stronger the intensity, the longer the effective length, and the larger the focal size of the generated photonic nanojets are. The numerical simulations of the photonic nanojets from the biocompatible core-shell microspheres on a Klarite substrate, which is a classical surface-enhancing Raman scattering substrate, showed that the Raman signals in the case of adding the core-shell microspheres in the system can be further enhanced 23 times in water and 108 times in air as compared in the case in which no core-shell microspheres are present. Our study of using tunable photonic nanojets produced from the biocompatible hydrogel core-shell microspheres shows potential in future biosensing applications.

6.
Colloids Surf B Biointerfaces ; 175: 26-35, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30513471

ABSTRACT

Biocompatible and highly porous network hydrogel scaffolds were fabricated for the development of artificial cornea (AC) periphery/skirt that could be used to enhance the long-term retention of the implants. In this study, a series of hydrogel scaffolds for this application was fabricated from the photo-polymerization of a mixture of poly(ethylene glycol) (PEG)- and poloxamer (P407)-based macromer solutions in dichloromethane in which solvent-induced phase separation (SIPS) arose to form scaffolds with macroporous structure and high water content. The overall porosity ranging from 20% to 75% and open/closed pore structure of the hydrogel scaffolds could be finely tuned by varying the ratio of P407/PEG in the macromer solution and solvent type. The total porosity and open-cell structure of the macropores in the synthesized hydrogel scaffolds affected the swelling behavior, dynamic properties such as the storage moduli of the hydrogels as well as their degradation rates. Based on the subcutaneous implantation in rats, superporous hydrogel scaffolds induced the formation of thinner fibrous capsules around the implants and showed less inflammatory reaction, suggesting that the hydrogel scaffolds made from SIPS exhibited good cytocompatibility. The combined results of swelling ratio, porosity, physical strength and subcutaneous implant tests indicated that the superporous hydrogels with porosity >50% showed potentials to be used for cornea periphery application.


Subject(s)
Biocompatible Materials/chemistry , Hydrogels/chemistry , Poloxamer/chemistry , Polyethylene Glycols/chemistry , Animals , Artificial Organs , Biocompatible Materials/administration & dosage , Cornea/cytology , Cornea/drug effects , Cornea/physiology , Hydrogels/administration & dosage , Microscopy, Electron, Scanning , Porosity , Rats, Wistar , Tissue Engineering , Tissue Scaffolds/chemistry
7.
Ultrasonics ; 83: 157-163, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28408049

ABSTRACT

Episodic release of bioactive compounds plays an important role in biological systems. "On-demand" release systems which based on polymeric materials and activated by external stimuli may provide the necessary functionality. Here we describe an ultrasound-responsive hydrogel based on N-isopropylacrylamide (NIPAM) and N,N'-methylenebisacrylamide (MBAm), which is suitable for triggered release of two large molecules: bovine serum albumin (BSA, 66kDa) and dextran (3-5kDa). It is shown that the release amount of these two large molecules increased with increasing hydrogel temperature, and the application of ultrasound further increased the release. By simply adjusting the contents of NIPAM and MBAm, the difference of BSA release between the presence and absence of ultrasound could be adjusted from 2.7 to 84 folds. There was also a positive correlation between the ultrasound intensity and release amount. These properties made the NIPAM-based hydrogel a tunable platform for focal drug delivery.

8.
J Ophthalmol ; 2017: 5410143, 2017.
Article in English | MEDLINE | ID: mdl-29250440

ABSTRACT

Current intraocular pressure (IOP) measurement using air puff could be erroneous without applying proper corrections. Although noncontact tonometry is not considered to be accurate, it is still popularly used by eye clinics. It is thus necessary to extract the correct information from their results. This study proposes a practical approach to correctly measure IOP in vivo. By embedding a new model-based correction to the Corvis® ST, we can extract the corneal Young's modulus from the patient data. This Young's modulus can be used to correct the IOP readings. The tests were applied to 536 right eyes of 536 healthy subjects (228 male and 308 female) between March of 2012 and April of 2016. The tests were applied to patients at the Department of Ophthalmology, National Taiwan University Hospital and the Hung-Chuo Eye Clinics. The statistical analysis showed that the value for the Young's modulus was independent of all the other parameters collected from the Corvis ST, including the corneal thickness and the intraocular pressure. Therefore, it is important to independently measure the Young's modulus instead of depending on the correlation with the other parameters. This study adds the methodology of measuring corneal stiffness in vivo for ophthalmologists' reference in diagnosis.

9.
ACS Sens ; 2(1): 69-79, 2017 Jan 27.
Article in English | MEDLINE | ID: mdl-28722429

ABSTRACT

The concentration gradient of K+ across the cell membrane of a neuron determines its resting potential and cell excitability. During neurotransmission, the efflux of K+ from the cell via various channels will not only decrease the intracellular K+ content but also elevate the extracellular K+ concentration. However, it is not clear to what extent this change could be. In this study, we developed a multiple-parallel-connected silicon nanowire field-effect transistor (SiNW-FET) modified with K+-specific DNA-aptamers (aptamer/SiNW-FET) for the real-time detection of the K+ efflux from cultured cortical neurons. The aptamer/SiNW-FET showed an association constant of (2.18 ± 0.44) × 106 M-1 against K+ and an either less or negligible response to other alkali metal ions. The α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) stimulation induced an outward current and hyperpolarized the membrane potential in a whole-cell patched neuron under a Na+/K+-free buffer. When neurons were placed atop the aptamer/SiNW-FET in a Na+/K+-free buffer, AMPA (13 µM) stimulation elevated the extracellular K+ concentration to ∼800 nM, which is greatly reduced by 6,7-dinitroquinoxaline-2,3-dione, an AMPA receptor antagonist. The EC50 of AMPA in elevating the extracellular K+ concentration was 10.3 µM. By stimulating the neurons with AMPA under a normal physiological buffer, the K+ concentration in the isolated cytosolic fraction was decreased by 75%. These experiments demonstrate that the aptamer/SiNW-FET is sensitive for detecting cations and the K+ concentrations inside and outside the neurons could be greatly changed to modulate the neuron excitability.

10.
Dent Mater ; 32(1): 114-24, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26657904

ABSTRACT

OBJECTIVE: The detachment of fiber posts from root canals is primarily caused by the loss of adhesion between dentin and cement; therefore, the purpose of this study was to formulate a novel resin cement that improves the bond strength of fiber posts to the dentin-cement interface. METHODS: Three concentrations (30, 35, and 40wt.%) of bis[2-(methacryloyloxy)-ethyl] phosphate (2MP) were prepared as dentin bonding agent components. Isobornyl acrylate (IBOA) and ethylhexylacrylate (EHA) were used as key components to fabricate the resin cement (named IE cement). The adhesive strengths of IE cement to coronal and root canal dentin were tested after placement of specimens in a water bath at 100% humidity and 37°C for either 24h or 5 months. The microtensile bond test, the push-out bond test, and the fracture toughness test were performed. Four commercially available resin cements (Nexus(®) third generation (NX3), Variolink II, RelyX Unicem, and Panavia F 2.0) were used for comparisons. X-ray photoelectron spectroscopy (XPS) was used to analyze the interaction of collagen extracted from human dentin and 2MP as well as the fracture surfaces of the specimens submitted to the microtensile bond test. RESULTS: The 35% concentration of 2MP, in combination with IBOA and EHA, was the most effective for improving the IE cement's bond strength to dentin. The XPS results revealed that the phosphate groups of 2MP formed hydrogen bonds with the collagen and that such bonds prominently decreased in number in the specimens that were stored for 5 months. SIGNIFICANCE: The combination of 2MP, IBOA, and EHA can effectively increase the adhesive strength of IE cement to dentin via hydrogen bond formation.


Subject(s)
Acrylates/chemistry , Dentin-Bonding Agents/chemistry , Resin Cements/chemistry , Dentin-Bonding Agents/chemical synthesis , Humans , Hydrogen Bonding , Materials Testing , Resin Cements/chemical synthesis , Surface Properties , Tensile Strength
11.
Polymers (Basel) ; 8(11)2016 Oct 27.
Article in English | MEDLINE | ID: mdl-30974658

ABSTRACT

A series of novel p-type conjugated copolymers, PTTVBDT, PTTVBDT-TPD, and PTTVBDT-DPP, cooperating benzo[1,2-b:4,5-b']dithiophene (BDT) and terthiophene-vinylene (TTV) units with/without thieno[3,4-c]pyrrole-4,6-dione (TPD) or pyrrolo[3,4-c]pyrrole-1,4-dione (DPP) via Stille polymerization were synthesized and characterized. Copolymer PTTVBDT shows a low-lying HOMO energy level and ordered molecular-packing behavior. Furthermore, two terpolymers, PTTVBDT-TPD and PTTVBDT-DPP, display stronger absorption ability, alower-lying HOMO energy level, and preferred molecular orientation, due to the replacement TTV-monomer units with electron-deficient groups. Furthermore, bulk-heterojunction organic solar cells were fabricated using blends of the PTTVBDT-TPD, and PC61BM gave the best power conversion efficiency of 5.01% under the illumination of AM 1.5G, 100 mW·cm-2; the short circuit current (Jsc) was 11.65 mA·cm-2 which displayed a 43.8% improvement in comparison with the PTTVBDT/PC61BM device. These results demonstrate a valid strategy combining the two-dimensional molecular structure with random copolymerization strikes promising conjugated polymers to achieve highly efficient organic photovoltaics.

12.
Nanoscale ; 6(10): 5208-16, 2014 May 21.
Article in English | MEDLINE | ID: mdl-24681573

ABSTRACT

Driven by molecular affinity and balance in the crystallization kinetics, the ability to co-crystallize dissimilar yet self-crystallizable blocks of a block copolymer (BCP) into a uniform domain may strongly affect its phase diagram. In this study, we synthesize a new series of crystalline and monodisperse all-π-conjugated poly(2,5-dihexyloxy-p-phenylene)-b-poly(3-(2-ethylhexyl)thiophene) (PPP-P3EHT) BCPs and investigate this multi-crystallization effect. Despite vastly different side-chain and main-chain structures, PPP and P3EHT blocks are able to co-crystallize into a single uniform domain comprising PPP and P3EHT main-chains with mutually interdigitated side-chains spaced in-between. With increasing P3EHT fraction, PPP-P3EHTs undergo sequential phase transitions and form hierarchical superstructures including predominately PPP nanofibrils, co-crystalline nanofibrils, a bilayer co-crystalline/pure P3EHT lamellar structure, a microphase-separated bilayer PPP-P3EHT lamellar structure, and finally P3EHT nanofibrils. In particular, the presence of the new co-crystalline lamellar structure is the manifestation of the interaction balance between self-crystallization and co-crystallization of the dissimilar polymers on the resulting nanostructure of the BCP. The current study demonstrates the co-crystallization nature of all-conjugated BCPs with different main-chain moieties and may provide new guidelines for the organization of π-conjugated BCPs for future optoelectronic applications.

13.
Nanoscale ; 6(4): 2194-200, 2014 Feb 21.
Article in English | MEDLINE | ID: mdl-24382571

ABSTRACT

Solution processing of π-conjugated polymers constitutes a major low-cost manufacturing method for the fabrication of many new organic optoelectronic devices. The solution self-assembly kinetics of π-conjugated rod-coil block copolymers of symmetric poly(3-hexyl thiophene)-b-poly(2-vinyl pyridine) (P3HT-P2VP) during drying and the phase transformations of the subsequently dried samples were studied by using a combination of TEM, SAXS, WAXS and DSC measurements. During solution drying in chlorobenzene, a good solvent for the copolymer, P3HT-P2VP first formed nanoseed aggregates followed by the directional growth of nanofibrils driven by the formation of prevailing form II P3HT crystals within its nanofibril core confined by the surrounding domain of P2VP blocks. This result was in sharp contrast when a similar molecular weight P3HT homopolymer was solution self-assembled in chlorobenzene, nearly free from confinement, in which case the resulting nanofibrils consisted of a mixture of majority form I and form II crystals. Solvent-cast films of P3HT-P2VP nanofibrils with form II crystals were heat-/cold-treated and showed solid-state phase transformations from form II crystals to form I crystals, both within nanofibrils with annealing, indicating the metastability of the form II crystals with temperature. A disordered state followed with increasing temperatures which, when cooled, induced the formation of a thermodynamically stable lamellar phase with only form I P3HT crystals. Correspondingly, the study provides new strategies for controlling polymorphs and nanostructures of π-conjugated block copolymers for future applications using solution processing and subsequent heat treatment.


Subject(s)
Nanofibers/chemistry , Polyvinyls/chemistry , Thiophenes/chemistry , Crystallization
14.
ACS Nano ; 8(2): 1254-62, 2014 Feb 25.
Article in English | MEDLINE | ID: mdl-24455966

ABSTRACT

An all-conjugated diblock copolymer, poly(2,5-dihexyloxy-p-phenylene)-b-poly(3-hexylthiophene) (PPP-b-P3HT), was synthesized and applied as a hole transport material (HTM) for the fabrication of solid-state dye-sensitized solar cells (ss-DSCs). This copolymer is characterized by an enhanced crystallinity, enabling its P3HT component to self-organize into interpenetrated and long-range-ordered crystalline fibrils upon spin-drying and ultimately endowing itself to have a faster hole mobility than that of the parent P3HT homopolymer. Transient photovoltage measurements indicate that the photovoltaic cell based on PPP-b-P3HT as the HTM has a longer electron lifetime than that of the reference device based on P3HT homopolymer. Moreover, comparing the two ss-DSCs in terms of the electrochemical impedance spectra reveals that the electron density in the TiO2 conduction band is substantially higher in the PPP-b-P3HT device than in the P3HT cell. Above observations suggest that the PPP block facilitates an intimate contact between the copolymer and dye molecules absorbed on the nanoporous TiO2 layer, which significantly enhances the performance of the resulting device. Consequently, the PPP-b-P3HT ss-DSC exhibits a promising power conversion efficiency of 4.65%. This study demonstrates that conjugated block copolymers can function as superior HTMs of highly efficient ss-DSCs.

15.
J Phys Chem B ; 117(2): 690-6, 2013 Jan 17.
Article in English | MEDLINE | ID: mdl-23244684

ABSTRACT

Varying composition of π-donor/acceptor moieties has been considered as an effective strategy for fine-tuning of the electronic properties of D-A conjugated copolymers. In this study, the change of optoelectronic properties with the change of donor/acceptor ratios is investigated on the basis of first-principles density functional calculations. Copolymers containing moieties of similar π-electron donating and/or accepting capabilities, e.g., thiophene (T)-methoxythiophene (OT), exhibit a linear dependence of electronic properties (especially, HOMO/LUMO, band gap, and bandwidth) on the D/A content. In contrast, for strong D/A contrast systems, e.g., thiophene (T)-thienopyrazine (TP), the electronic properties vary nonlinearly with D/A compositions. However, when the block size of one parent monomer in a strong D/A contrast system is fixed, the variation of electronic properties shows a remarkable linear correlation against D/A compositions. We found that the deviation of electronic properties from a linear composition dependence is dominated by the strength of orbital interactions between D and A. Weak orbital interactions between D and A moieties tend to lead to a nonlinear composition dependence. Our results provide useful insights for band gap tuning through the adjustment of D/A compositions in D-A conjugated copolymers.

16.
Langmuir ; 27(1): 109-15, 2011 Jan 04.
Article in English | MEDLINE | ID: mdl-21141849

ABSTRACT

An ordered nanostructure can be created from the hybrid materials of self-assembly poly(3-hexyl thiophene-b-2-vinyl pyridine) and nicotinic acid-modified titanium dioxide nanoparticles (P3HT-b-P2VP/TiO(2)). TEM and XRD analyses reveal that the TiO(2) nanoparticles (NPs) are preferentially confined in the P2VP domain of P3HT-b-P2VP whereas TiO(2) NPs interact with either pure P3HT or a blend of P3HT and P2VP to produce microsized phase segregation. The morphologies of lamellar and cylindrical structures are disturbed when the loading of TiO(2) NPs is 40 wt % or higher. Cylindrical P3HT-b-P2VP/TiO(2) exhibits a small blue shift in absorption and photoluminescence spectra with increasing TiO(2) loading as compared to P3HT/TiO(2). The NPs cause a slightly misaligned P3HT domain in the copolymer. Furthermore, the PL quenching of P3HT-b-P2VP/TiO(2) becomes very large as a result of efficient charge separation in the ordered nanodomain at 16 nm. Solar cells fabricated from self-assembly P3HT-b-P2VP/TiO(2) hybrid materials exhibit a >30 fold improvement in power conversion efficiency as compared to the corresponding 0.3P3HT-0.7P2VP/TiO(2) polymer blend hybrid. This study paves the way for the further development of high-efficiency polymer-inorganic nanoparticle hybrid solar cells using a self-assembled block copolymer.

17.
Langmuir ; 26(6): 4196-206, 2010 Mar 16.
Article in English | MEDLINE | ID: mdl-20095618

ABSTRACT

In this study, we synthesized organic/inorganic hybrid materials containing cadmium sulfide (CdS) nanoparticles using a novel amphiphilic conducting block copolymer as a synergistic structure-directing template and an efficient exciton quencher of the hybrid. The amphiphilic rod-coil block copolymer of polyphenylene-b-poly(2-vinyl pyridine) (PPH-PVP) was first prepared from its coil-coil precursor block copolymer of poly(1,3-cyclohexadiene)-b-poly(2-vinyl pyridine) (PCHD-PVP) by using sequential anionic polymerization followed by the aromatization reaction of converting the PCHD block to form conducting PPH. The synthesized PCHD-PVP block copolymers self-assembled into different bulk nanostructures of lamellae, cylinders, and spheres at a volume fraction similar to that of many coil-coil block copolymer systems. However, an enhanced chain-stiffness-induced morphological transformation was observed after the aromatization reaction. This is evidenced by the TEM observation in which both spherical and cylindrical structured PCHD-PVPs transform into lamellar structured PPH-PVPs after aromatization. In addition to the bulk-phase transformation, the rigid-rod characteristic of the conducting PPH block also affects the self-assembling property of the block copolymers in their solution state. CdS nanoparticles were synthesized in situ in a selective solvent of THF using PCHD-PVP and PPH-PVP micelles as nanoreactors. The PPH-PVP/Cd ion in THF exhibits a new ringlike structure of uniform size (approximately 50 nm) with PPH in the inner rim and complexed PVP/Cd ions in the outer rim as a result of the effects of strong intermolecular forces between PPH segments and the solvophobic interaction. CdS nanoclusters were subsequently synthesized in situ from the PPH-PVP/Cd(2+) ring structure, forming a nanohybrid with intimate contact between the PPH domain and CdS nanoparticles. In particular, we found that there is an efficient energy/electron transfer between the conducting PPH domain and CdS nanoparticles in the hybrid, resulting in an enhanced PL quenching effect. The novel nanohybrid shows the potential to be used for optoelectronic applications.


Subject(s)
Nanostructures , Polymers/chemistry , Semiconductors , Calorimetry, Differential Scanning , Chromatography, Gel , Magnetic Resonance Spectroscopy , Microscopy, Electron, Transmission , Spectrometry, Fluorescence , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared
18.
Sensors (Basel) ; 10(4): 3641-54, 2010.
Article in English | MEDLINE | ID: mdl-22319317

ABSTRACT

We designed and fabricated a new sensing system which consists of two virtual impactors and two quartz-crystal microbalance (QCM) sensors for measuring particle mass concentration and size distribution. The virtual impactors utilized different inertial forces of particles in air flow to classify different particle sizes. They were designed to classify particle diameter, d, into three different ranges: d<2.28 µm, 2.28 µm≤d≤3.20 µm, d>3.20 µm. The QCM sensors were coated with a hydrogel, which was found to be a reliable adhesive for capturing aerosol particles. The QCM sensor coated with hydrogel was used to measure the mass loading of particles by utilizing its characteristic of resonant frequency shift. An integrated system has been demonstrated.

19.
J Colloid Interface Sci ; 330(1): 170-4, 2009 Feb 01.
Article in English | MEDLINE | ID: mdl-18990405

ABSTRACT

In this work, poly(acrylic acid-co-sodium acrylate) P(AA-SA) latex particles were prepared by inverse miniemulsion polymerization and used as a pH buffering agent for application. The polymerization was quickly initiated by a redox initiator (ammonium persulfate/sodium metabisulfite) at 0-5 degrees C. Thus the possibility of monomer dissolving in a solvent was reduced, which enhanced the degree of droplet nucleation. The effects of costabilizer and the ratio of SA/(AA+SA) in functional latex particles on the nucleation mechanism and emulsion stability were investigated. The apparent pK(a) values of the synthesized P(AA-SA) latex particles were determined by titration experiments. Their properties on pH buffering were also studied, including the pH temporal response and pH buffering ability. The results showed that sodium hydroxide, which was introduced as the costabilizer to enhance the osmotic pressure and to increase the deprotonation of acrylic acid, was effective in guaranteeing droplet nucleation predominantly. Meanwhile, the surfactant concentration was controlled to be less than its critical micelle concentration (CMC) value to avoid micellar nucleation. Furthermore, the P(AA-SA) latex particles thus synthesized were found to be an excellent material for pH buffering. The pH temporal response was very rapid and related to the crosslinking degree of the latex particles. The terminal range of pH buffering for latex particles was controllable by the ratio of SA/(AA+SA).

SELECTION OF CITATIONS
SEARCH DETAIL
...