Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 72(27): 15311-15320, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38943596

ABSTRACT

Omega-3 long-chain polyunsaturated fatty acids (LCPUFA) play critical roles in human development and health. Their intake is often effectively estimated solely based on seafood consumption, though the high intake of terrestrial animal-based foods with minor amounts of LCPUFA may be significant. Covalent adduct chemical ionization (CACI) tandem mass spectrometry is one approach for de novo structural and quantitative analysis of minor unsaturated fatty acids (FA), for which standards are unavailable. Here, CACI-MS and MS/MS are used to identify and quantify minor omega-3 LCPUFA of terrestrial animal foods based on the application of measured response factors (RFs) to various FA. American mean intakes of pork, beef, chicken, and eggs contribute 20, 27, 45, and 71 mg/day of docosahexaenoic acid (DHA), respectively. The estimated intake of omega-3 DHA, eicosapentaenoic acid, and docosapentaenoic acid from nonseafood sources is significant, at 164, 103, and 330 mg/day, greater than most existing estimates of omega-3 LCPUFA intake.


Subject(s)
Chickens , Eggs , Fatty Acids, Omega-3 , Animals , Fatty Acids, Omega-3/analysis , Fatty Acids, Omega-3/chemistry , Eggs/analysis , Humans , United States , Cattle , Swine , Meat/analysis , Tandem Mass Spectrometry/methods , Mass Spectrometry/methods , Docosahexaenoic Acids/analysis , Docosahexaenoic Acids/chemistry
2.
Environ Int ; 184: 108467, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38310815

ABSTRACT

Heavy metal (HM) enrichment is closely related to soil organic carbon (SOC) pools in terrestrial ecosystems, which are deeply intertwined with soil microbial processes. However, the influence of HMs on SOC remains contentious in terms of magnitude and direction. A global analysis of 155 publications was conducted to integrate the synergistic responses of SOC and microorganisms to HM enrichment. A significant increase of 13.6 % in SOC content was observed in soils exposed to HMs. The response of SOC to HMs primarily depends on soil properties and habitat conditions, particularly the initial SOC content, mean annual precipitation (MAP), initial soil pH, and mean annual temperature (MAT). The presence of HMs resulted in significant decreases in the activities of key soil enzymes, including 31.9 % for soil dehydrogenase, 24.8 % for ß-glucosidase, 35.8 % for invertase, and 24.3 % for cellulose. HMs also exerted inhibitory effects on microbial biomass carbon (MBC) (26.6 %), microbial respiration (MR) (19.7 %), and the bacterial Shannon index (3.13 %) but elevated the microbial metabolic quotient (qCO2) (20.6 %). The HM enrichment-induced changes in SOC exhibited positive correlations with the response of MBC (r = 0.70, p < 0.01) and qCO2 (r = 0.50, p < 0.01), while it was negatively associated with ß-glucosidase activity (r = 0.72, p < 0.01) and MR (r = 0.39, p < 0.01). These findings suggest that the increase in SOC storage is mainly attributable to the inhibition of soil enzymes and microorganisms under HM enrichment. Overall, this meta-analysis highlights the habitat-dependent responses of SOC to HM enrichment and provides a comprehensive evaluation of soil carbon dynamics in an HM-rich environment.


Subject(s)
Cellulases , Metals, Heavy , Carbon/metabolism , Soil/chemistry , Ecosystem , Soil Microbiology , Metals, Heavy/toxicity , Metals, Heavy/analysis
3.
J Hazard Mater ; 465: 133086, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38035526

ABSTRACT

Heavy metals (HMs) profoundly impact soil carbon storage potential primarily through soil carbon structure. The association between HM content and soil carbon structure in mangrove sediments remains unclear, likely due to the involvement of microorganisms. In this study, surface sediments in the Futian National Mangrove Nature Reserve were sampled to investigate the chemical structure of soil organic carbon (SOC), the molecular composition of dissolved organic matter (DOM), and potential interactions with microorganisms. HMs, except for Ni, were positively correlated with soil carbon. HMs significantly reduced the alkyl C/O-alkyl C ratio, aromaticity index, and aromatic C values, but increased the labile carboxy/amide C and carbonyl C ratio in SOC. HMs also increased DOM stability, as reflected by the reduced abundance of labile DOM (lipids and proteins) and increased proportion of stable DOM (tannins and condensed aromatics). Bacteria increased the decomposition of labile DOM components (unsaturated hydrocarbons) and the accumulation of stable DOM components (lignins) under HM enrichment. In addition, the association between the bacterial groups and DOM molecules was more robust than that with fungal groups, indicating bacteria had a more significant impact on DOM molecular composition. These findings help in understanding the molecular mechanisms of soil carbon storage in HM-rich mangroves.


Subject(s)
Metals, Heavy , Soil , Soil/chemistry , Carbon , Molecular Structure , Metals, Heavy/analysis , Organic Chemicals , Bacteria
SELECTION OF CITATIONS
SEARCH DETAIL
...