Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Langmuir ; 40(24): 12681-12688, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38839051

ABSTRACT

Photocatalytic conversion of CO2 to hydrocarbon fuel is a potential strategy to solve energy shortage and mitigate the greenhouse effect. Here, direct Z-scheme heterojunction photocatalysts (In2O3/Bi2S3) without an electron mediator are prepared by a simple hydrolysis method. The In2O3/Bi2S3 composite photocatalysts show greatly boosted photoactivity on CO2 conversion to CO compared with the pristine In2O3 and Bi2S3. The highest CO evolution rate of 2.67 µmol·g-1·h-1 is achieved by In2O3/Bi2S3-3, without any sacrificial agent or cocatalyst, which is about 3.87 times that of In2O3 (0.69 µmol·g-1·h-1). The boosted photocatalytic performance of In2O3/Bi2S3 composite catalysts can be ascribed to the establishment of a Z-scheme heterojunction, improving the photoabsorption and facilitating charge separation and transfer. This study provides a reference for designing and fabricating high-efficiency Z-scheme heterojunction photocatalysts for photocatalytic CO2 reduction.

2.
Adv Mater ; : e2401451, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630988

ABSTRACT

Graphene's emergence enables creating chiral metamaterials in helical shapes for terahertz (THz) applications, overcoming material limitations. However, practical implementation remains theoretical due to fabrication challenges. This paper introduces a dual-component self-assembly technique that enables creating vertically-aligned continuous monolayer graphene helices at microscale with great flexibility and high controllability. This assembly process not only facilitates the creation of 3D microstructures, but also positions the 3D structures from a horizontal to a vertical orientation, achieving an aspect ratio (height/width) of ≈2700. As a result, an array of vertically-aligned graphene helices is formed, reaching up to 4 mm in height, which is equivalent to 4 million times the height of monolayer graphene. The benefit of these 3D chiral structures made from graphene is their capability to infinitely extend in height, interacting with light in ways that are not possible with traditional 2D layering methods. Such an impressive height elevates a level of interaction with light that far surpasses what is achievable with traditional 2D layering methods, resulting in a notable enhancement of optical chirality properties. This approach is applicable to various 2D materials, promising advancements in innovative research and diverse applications across fields.

3.
Environ Res ; 251(Pt 1): 118649, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38458589

ABSTRACT

A novel photocatalyst In2O3 with loading Ag particles is prepared via a facile one-step annealing method in air atmosphere. The Ag/In2O3 exhibits considerable photoactivity for decomposing sulfisoxazole (SOX), tetracycline hydrochloride (TC), and rhodamine B (RhB) under natural sunlight irradiation, which is much higher than that of pristine In2O3 and Ag species. After natural sunlight irradiation for 100 min, 70.6% of SOX, 65.6% of TC, and 81.9% of RhB are degraded over Ag/In2O3, and their corresponding chemical oxygen demand (COD) removal ratio achieve 95.4%, 38.4%, and 93.6%, respectively. A batch of experiments for degrading SOX with adjusting pollutant solution pH and adding coexisting anions over Ag/In2O3 are carried out to estimate its practical application prospect. Particularly, the as-prepared Ag/In2O3 possesses a superior stability, which exhibits no noticeable deactivation in decomposing SOX after eight cycles' reactions. In addition, the Ag/In2O3 coated on a frosted glass plate, also possesses a superior activity and stability for SOX removal, which solve the possible second pollution of residual powdered catalyst in water. Ag particles on In2O3 working as electron accepter improve charge separation and transfer efficiency, as well as the photo-absorption and organic pollutants affinity, leading to the boosted photoactivity of Ag/In2O3. The photocatalytic mechanism for degrading SOX and degradation process over Ag/In2O3 has been systemically investigated and proposed. This work offers an archetype for the rational design of highly efficient photocatalysts by metal loading.


Subject(s)
Silver , Sunlight , Silver/chemistry , Water Pollutants, Chemical/chemistry , Catalysis , Rhodamines/chemistry , Photolysis
4.
ACS Nano ; 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38318803

ABSTRACT

A rarely discussed phenomenon in the realm of photocatalytic materials involves the presence of gradient distributed dopants and defects from the interior to the surface. This intriguing characteristic has been successfully achieved in the case of ZnS through the incorporation of atomic monovalent copper ions (Cu+) and concurrent sulfur vacancies (Vs), resulting in a photocatalyst denoted as G-CZS1-x. Through the cooperative action of these atomic Cu dopants and Vs, G-CZS1-x significantly extends its photoabsorption range to encompass the full spectrum (200-2100 nm), which improves the solar utilization ability. This alteration enhances the efficiency of charge separation and optimizes Δ(H*) (free energy of hydrogen adsorption) to approach 0 eV for the hydrogen evolution reaction (HER). It is noteworthy that both surface-exposed atomic Cu and Vs act as active sites for photocatalysis. G-CZS1-x exhibits a significant H2 evolution rate of 1.01 mmol h-1 in the absence of a cocatalyst. This performance exceeds the majority of previously reported photocatalysts, exhibiting approximately 25-fold as ZnS, and 5-fold as H-CZS1-x with homogeneous distribution of equal content Cu dopants and Vs. In contrast to G-CZS1-x, the H adsorption on Cu sites for H-CZS1-x (ΔG(H*) = -1.22 eV) is excessively strong to inhibit the H2 release, and the charge separation efficiency for H-CZS1-x is relatively sluggish, revealing the positive role of a gradient distribution model of dopants and defects on activity enhancement. This work highlights the synergy of atomic dopants and defects in advancing photoactivity, as well as the significant benefit of the controllable distribution model of dopants and defects for photocatalysis.

5.
Langmuir ; 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38340084

ABSTRACT

The CO2 photocatalytic conversion efficiency of the semiconductor photocatalyst is always inhibited by the sluggish charge transfer and undesirable CO2 affinity. In this work, we prepare a series of K-doped In2O3 catalysts with concomitant oxygen vacancies (OV) via a hydrothermal method, followed by a low-temperature sintering treatment. Owing to the synergistic effect of K doping and OV, the charge separation and CO2 affinity of In2O3 are synchronously promoted. Particularly, when P/P0 = 0.010, at room temperature, the CO2 adsorption capacity of the optimal K-doped In2O3 (KIO-3) is 2336 cm3·g-1, reaching about 6000 times higher than that of In2O3 (0.39 cm3·g-1). As a result, in the absence of a cocatalyst or sacrificial agent, KIO-3 exhibits a CO evolution rate of 3.97 µmol·g-1·h-1 in a gas-solid reaction system, which is 7.6 times that of pristine In2O3 (0.52 µmol·g-1·h-1). This study provides a novel approach to the design and development of efficient photocatalysts for CO2 conversion by element doping.

6.
Environ Pollut ; 344: 123325, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38190871

ABSTRACT

In this work, a series of hydrogenated Fe-doped AgIO3 (FAI-x) catalysts are synthesized for photodegrading diverse azo dyes and antibiotics. Under the irradiation of natural sunlight with a light intensity of ∼60 mW/cm2, the optimum FAI-10 exhibits a considerable rate constant for decomposing methyl orange (MO) of 0.067 min-1, about 7.4 times higher than that of AgIO3 (0.009 min-1), and 24.6% and 83.8% of MO can be decomposed over AgIO3 and FAI-10 after irradiation for 40 min. In the amplification photodegradation experiments with using 0.5 g catalyst and 400 mL MO dye solution (10 mg/L), FAI-10 possesses greatly higher photoreactivity to common semiconductors (ZnO, TiO2, In2O3 and Bi2MoO6), and the photodegradation rates over FAI-10 are 92%. Particularly, the FAI-10 shows superior stability, the activity of which remains unaltered after 8 continuous cycles. Foreign ions and water bodies have slight effect on the activity of FAI-10, but the MO degradation rates are decreased by adjusting pH values, especially when pH = 11 because of the strong electrostatic repulsion between MO and FAI-10. FAI-10 can also effectively decompose another azo dye (rhodamine B (RhB)) and diverse antibiotics (sulflsoxazole (SOX), chlortetracycline hydrochloride (CTC), tetracycline hydrochloride (TC) and ofloxacin (OFX)). The activity enhancement mechanism of FAI-10 has been systemically investigated and is ascribed to the promoted photo-absorption, charge separation and transfer efficiency, and affinity of organic pollutants, owing to the synergistic effect of Fe doping and oxygen vacancy (Ov). The photocatalytic mechanisms and process for decomposing MO are verified and proposed based on radical trapping experiments and liquid chromatography-mass spectrometry (LC-MS). This work opens an avenue for the fabrication of effective photocatalysts toward water purification.


Subject(s)
Azo Compounds , Environmental Pollutants , Oxygen/chemistry , Sunlight , Light , Anti-Bacterial Agents , Catalysis
7.
Chem Commun (Camb) ; 59(75): 11280-11283, 2023 Sep 19.
Article in English | MEDLINE | ID: mdl-37665259

ABSTRACT

Transition metal ions (M = Ag+, Cu2+, Co2+, and Cr3+) are surface or homogeneously doped into ZnS via facile cation-exchange reaction, and while Ag+ and Cu2+ doping does not induce sulphur vacancies (Vs) or zinc vacancies (VZn), Co2+ and Cr3+ doping induces Vs. The surface doped catalysts exhibit greatly higher activity than the ZnS and homogenous doped catalysts for H2 evolution and CO2 reduction. The important role of the doping state on affecting the photo-absorption, carrier separation efficiency, and photoreaction kinetics has been systemically investigated and proposed. This work sheds light on the future design and fabrication of high-performance photocatalysts by element doping.

8.
Commun Chem ; 6(1): 108, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37277463

ABSTRACT

The engineering of atomically-precise nanopores in two-dimensional materials presents exciting opportunities for both fundamental science studies as well as applications in energy, DNA sequencing, and quantum information technologies. The exceptional chemical and thermal stability of hexagonal boron nitride (h-BN) suggest that exposed h-BN nanopores will retain their atomic structure even when subjected to extended periods of time in gas or liquid environments. Here we employ transmission electron microscopy to examine the time evolution of h-BN nanopores in vacuum and in air and find, even at room temperature, dramatic geometry changes due to atom motion and edge contamination adsorption, for timescales ranging from one hour to one week. The discovery of nanopore evolution contrasts with general expectations and has profound implications for nanopore applications of two-dimensional materials.

9.
Adv Mater ; 35(13): e2208148, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36302090

ABSTRACT

Rigid, solid-state components represent the current paradigm for electronic systems, but they lack post-production reconfigurability and pose ever-increasing challenges to efficient end-of-life recycling. Liquid electronics may overcome these limitations by offering flexible in-the-field redesign and separation at end-of-life via simple liquid phase chemistries. Up to now, preliminary work on liquid electronics has focused on liquid metal components, but these devices still require an encapsulating polymer and typically use alloys of rare elements like indium. Here, using the self-assembly of jammed 2D titanium carbide (Ti3 C2 Tx ) MXene nanoparticles at liquid-liquid interfaces, "all-liquid" electrically conductive sheets, wires, and simple functional devices are described including electromechanical switches and photodetectors. These assemblies combine the high conductivity of MXene nanosheets with the controllable form and reconfigurability of structured liquids. Such configurations can have applications not only in electronics, but also in catalysis and microfluidics, especially in systems where the product and substrate have affinity for solvents of differing polarity.

10.
Langmuir ; 38(51): 16163-16171, 2022 12 27.
Article in English | MEDLINE | ID: mdl-36520846

ABSTRACT

The efficient removal of persistent organic pollutants (POPs) in natural waters is vital for human survival and sustainable development. Photocatalytic degradation is a feasible and cost-effective strategy to completely disintegrate POPs at room temperature. Herein, we develop a series of direct Z-scheme BiOIO3/AgIO3 hybrid photocatalysts via a facile deposition-precipitation method. Under natural sunlight irradiation, the light intensity of which is ∼40 mW/cm2, a considerable rate constant of 0.185 min-1 for photodecomposing 40 mg/L MO is obtained over 0.5 g/L Bi@Ag-5 composite photocatalyst powder, about 92.5 and 5.3 times higher than those of pristine AgIO3 and BiOIO3. The photoactivity of Bi@Ag-5 for photodecomposing MO under natural sunlight illumination surpasses most of the reported photocatalysts under Xe lamp illumination. After natural sunlight irradiation for 20 min, 95% of MO, 82% of phenol, 78% of 2,4-DCP, 54% of ofloxacin, and 88% of tetracycline hydrochloride can be photodecomposed over Bi@Ag-5. Relative to the commercial photocatalyst TiO2 (P25), Bi@Ag-5 exhibits greatly higher photoactivity for the treatment of MO-phenol-tetracycline hydrochloride mixture pollutants in the scale-up experiment of 500 mL of solution, decreasing COD, TOC, and chromaticity value by 52, 19, and 76%, respectively, after natural sunlight irradiation for 40 min. The photodegradation process and mechanism of MO have been systematically investigated and proposed. This work provides an archetype for designing efficient photocatalysts to remove POPs.


Subject(s)
Persistent Organic Pollutants , Sunlight , Humans , Lighting , Tetracycline , Catalysis , Phenols , Phenol
11.
J Environ Manage ; 323: 116236, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36150351

ABSTRACT

The photocatalytic CO2 reduction reaction is a multi-electron process, which is greatly affected by the surface electron density. In this work, we synthesize Ag clusters supported on In2O3 plasmonic photocatalysts. The Ag-In2O3 compounds show remarkedly enhanced photocatalytic activity for CO2 conversion to CO compared to pristine In2O3. In the absence of any co-catalyst or sacrificial agent, the CO evolution rate of optimal Ag-In2O3-10 is 1.56 µmol/g/h, achieving 5.38-folds higher than that of In2O3 (0.29 µmol/g/h). Experimental verification and DFT calculation demonstrate that electrons transfer from Ag clusters to In2O3 on Ag-In2O3 compounds. In Ag-In2O3 compounds, Ag clusters serving as electron donators owing to the SPR behaviour are not helpful to decline photo-induced charge recomnation rate, but can provide more electron for photocatalytic reaction. Overall, the Ag clusters promote visible-light absorption and accelerate photocatalytic reaction kinetic for In2O3, resulting in the photocatalytic activity enhancement of Ag-In2O3 compounds. This work puts insight into the function of plasmonic metal on enhancing photocatalysis performance, and provides a feasible strategy to design and fabricate efficient plasmonic photocatalysts.

12.
Nat Mater ; 21(8): 896-902, 2022 08.
Article in English | MEDLINE | ID: mdl-35835818

ABSTRACT

The colour centre platform holds promise for quantum technologies, and hexagonal boron nitride has attracted attention due to the high brightness and stability, optically addressable spin states and wide wavelength coverage discovered in its emitters. However, its application is hindered by the typically random defect distribution and complex mesoscopic environment. Here, employing cathodoluminescence, we demonstrate on-demand activation and control of colour centre emission at the twisted interface of two hexagonal boron nitride flakes. Further, we show that colour centre emission brightness can be enhanced by two orders of magnitude by tuning the twist angle. Additionally, by applying an external voltage, nearly 100% brightness modulation is achieved. Our ab initio GW and GW plus Bethe-Salpeter equation calculations suggest that the emission is correlated to nitrogen vacancies and that a twist-induced moiré potential facilitates electron-hole recombination. This mechanism is further exploited to draw nanoscale colour centre patterns using electron beams.


Subject(s)
Boron Compounds , Color
13.
Nano Lett ; 22(13): 5301-5306, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35760394

ABSTRACT

The low mass density and high mechanical strength of graphene make it an attractive candidate for suspended-membrane energy transducers. Typically, the membrane size dictates the operational frequency and bandwidth. However, in many cases it would be desirable to both lower the resonance frequency and increase the bandwidth, while maintaining overall membrane size. We employ focused ion beam milling or laser ablation to create kirigami-like modification of suspended pure-graphene membranes ranging in size from microns to millimeters. Kirigami engineering successfully reduces the resonant frequency, increases the displacement amplitude, and broadens the effective bandwidth of the transducer. Our results present a promising route to miniaturized wide-band energy transducers with enhanced operational parameter range and efficiency.


Subject(s)
Graphite , Equipment Design , Transducers , Vibration
14.
J Environ Manage ; 313: 115008, 2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35397465

ABSTRACT

Constructing direct Z-scheme system is a promising strategy to boost the photocatalytic performance for pollution waters restoration, but it is of great challenge because of the requirement of appropriately staggered energy band alignment and intimate interfacial interaction between semiconductors. Herein, a class of core-shell structured Ag2S-AgIO3 Z-scheme heterostructure photocatalysts are designed and developed. Ag2S is generated by the in-situ ion exchange reaction and anchored on the surface of AgIO3, so the intimate interface between AgIO3 and Ag2S is realized. Integration of AgIO3 and Ag2S extends the ultraviolet absorption of AgIO3 to Vis-NIR region, and also promote the charge separation and migration efficiency, contributing to the enhanced photocatalysis activity for composite catalysts. The optimal Ag2S-AgIO4-4 catalyst exhibits a MO photo-degradation rate constant of 0.298 h-1, which reaches 5.77 and 11.4-folds higher than that of AgIO3 (0.044 h-1) and Ag2S (0.024 h-1). The as-obtained composite catalyst exhibits universally photocatalytic activity in disintegrating diverse industrial pollutants and pharmaceuticals. Particularly, driven by natural sunlight, the Ag2S-AgIO4-4 can effectively decompose MO. A plausible Z-scheme photocatalytic mechanism and reaction pathways of MO degradation over composite catalyst are systemically investigated and proposed.


Subject(s)
Environmental Pollutants , Catalysis , Light , Sunlight
15.
Nano Lett ; 22(5): 2140-2146, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35050632

ABSTRACT

Curved fluidic channels with a circular cross-section play an important role in biology, chemistry, and medicine. However, in nanofluidics, a problem that is largely unsolved is the lack of an effective fabrication method for curved circular nanotubes (10-1000 nm). In this work, an electron-beam-induced self-assembly process was applied to achieve fine curved nanostructures for the realization of nanofluidic devices. The diameter of the tube could be precisely controlled by an atomic layer deposition process. Fluid transported through the nanochannels was verified and characterized using a dark-field microscope under an optical diffraction limit size. The fluid flow demonstrates that the liquid's evaporation (vapor diffusion) in the nanochannel generates compressed vapor, which pumps the liquid and pushes it forward, resulting in a directional flow behavior in the ∼100 nm radius of tubes. This phenomenon could provide a useful platform for the development of diverse nanofluidic devices.


Subject(s)
Nanostructures , Nanotubes , Biological Transport , Nanostructures/chemistry , Nanotechnology/methods
16.
Biomaterials ; 280: 121255, 2022 01.
Article in English | MEDLINE | ID: mdl-34810034

ABSTRACT

The pursuing of photosensitizers (PSs) with efficient reactive oxygen species (ROS) especially type I ROS generation in aggregate is always in high demand for photodynamic therapy (PDT) and photoimmunotherapy but remains to be a big challenge. Herein, we report a cationization molecular engineering strategy to boost both singlet oxygen and radical generation for PDT. Cationization could convert the neutral donor-acceptor (D-A) typed molecules with the dicyanoisophorone-triphenylamine core (DTPAN, DTPAPy) to their A-D-A' typed cationic counterparts (DTPANPF6 and DTPAPyPF6). Our experiment and simulation results reveal that such cationization could enhance the aggregation-induced emission (AIE) feature, promote the intersystem crossing (ISC) processes, and increase the charge transfer and separation ability, all of which work collaboratively to promote the efficient generation of ROS especially hydroxyl and superoxide radicals in aggregates. Moreover, these cationic AIE PSs also possess specific cancer cell mitochondrial targeting capability, which could further promote the PDT efficacy both in vitro and in vivo. Therefore, we expect this delicate molecular design represents an attractive paradigm to guide the design of type I AIE PSs for the further development of PDT.


Subject(s)
Neoplasms , Photochemotherapy , Humans , Neoplasms/drug therapy , Photochemotherapy/methods , Photosensitizing Agents/therapeutic use , Reactive Oxygen Species/metabolism , Singlet Oxygen/metabolism
17.
Inorg Chem ; 60(20): 15712-15723, 2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34590837

ABSTRACT

Developing highly efficient semiconductor photocatalysts for H2 evolution is intriguing, but their efficiency is subjected to the following three critical issues: limited light absorption, low carrier separation efficiency, and sluggish H2 evolution kinetics. Element surface doping is a feasible strategy to synchronously break through the above limitations. In this study, we prepared a series of Co-surface-doped ZnS photocatalysts to systematically investigate the effects of Co surface doping on photocatalytic activity and electronic structure. The implantation of Co results in the emergence of the impurity level above the valence band (VB) and the upshifted conduction band (CB) and enhances its visible light absorption. Co gradient doping inhibits the combination and facilitates the migration of carriers. S atoms are proven to be reactive active sites for photocatalytic H2 evolution over both ZnS and Co-doped ZnS. Co doping alters the surface electronic structure and decreases the absolute value for the hydrogen binding free energy (ΔGH) of the adsorbed hydrogen atom on the catalyst. As a consequence, Co-surface-doped ZnS shows boosted photocatalytic H2 evolution activity relative to the undoped material. This work provides insights into the mechanistic understanding of the surface element doping modification strategy to developing efficient photocatalysts.

18.
Small ; 17(14): e2100079, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33710768

ABSTRACT

Current graphene-based plasmonic devices are restricted to 2D patterns defined on planar substrates; thus, they suffer from spatially limited 2D plasmon fields. Here, 3D graphene forming freestanding nanocylinders realized by a plasma-triggered self-assembly process are introduced. The graphene-based nanocylinders induce hybridized edge (in-plane) and radial (out-of-plane) coupled 3D plasmon modes stemming from their curvature, resulting in a four orders of magnitude stronger field at the openings of the cylinders than in rectangular 2D graphene ribbons. For the characterization of the 3D plasmon modes, synchrotron nanospectroscopy measurements are performed, which provides the evidence of preservation of the hybridized 3D graphene plasmons in the high precision curved nanocylinders. The distinct 3D modes introduced in this paper, provide an insight into geometry-dependent 3D coupled plasmon modes and their ability to achieve non-surface-limited (volumetric) field enhancements.

19.
Nano Lett ; 21(5): 2066-2073, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33630613

ABSTRACT

Reversible self-assembly that allows materials to switch between structural configurations has triggered innovation in various applications, especially for reconfigurable devices and robotics. However, reversible motion with nanoscale controllability remains challenging. This paper introduces a reversible self-assembly using stress generated by electron irradiation triggered degradation (shrinkage) of a single polymer layer. The peak position of the absorbed energy along the depth of a polymer layer can be modified by tuning the electron energy; the peak absorption location controls the position of the shrinkage generating stress along the depth of the polymer layer. The stress gradient can shift between the top and bottom surface of the polymer by repeatedly tuning the irradiation location at the nanoscale and the electron beam voltage, resulting in reversible motion. This reversible self-assembly process paves the path for the innovation of small-scale machines and reconfigurable functional devices.

20.
Nano Lett ; 20(9): 6697-6705, 2020 09 09.
Article in English | MEDLINE | ID: mdl-32808792

ABSTRACT

Plasmonic sensors are commonly defined on two-dimensional (2D) surfaces with an enhanced electromagnetic field only near the surface, which requires precise positioning of the targeted molecules within hotspots. To address this challenge, we realize segmented nanocylinders that incorporate plasmonic (1-50 nm) gaps within three-dimensional (3D) nanostructures (nanocylinders) using electron irradiation triggered self-assembly. The 3D structures allow desired plasmonic patterns on their inner cylindrical walls forming the nanofluidic channels. The nanocylinders bridge nanoplasmonics and nanofluidics by achieving electromagnetic field enhancement and fluid confinement simultaneously. This hybrid system enables rapid diffusion of targeted species to the larger spatial hotspots in the 3D plasmonic structures, leading to enhanced interactions that contribute to a higher sensitivity. This concept has been demonstrated by characterizing an optical response of the 3D plasmonic nanostructures using surface-enhanced Raman spectroscopy (SERS), which shows enhancement over a 22 times higher intensity for hemoglobin fingerprints with nanocylinders compared to 2D nanostructures.


Subject(s)
Gold , Nanostructures , Electromagnetic Fields , Spectrum Analysis, Raman
SELECTION OF CITATIONS
SEARCH DETAIL
...