Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Asian J ; 18(16): e202300440, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37378545

ABSTRACT

Proton exchange membrane water electrolysers and alkaline exchange membrane water electrolysers for hydrogen production suffer from sluggish kinetics and the limited durability of the electrocatalyst toward oxygen evolution reaction (OER). Herein, a rutile Ru0.75 Mn0.25 O2-δ solid solution oxide featured with a hierarchical porous structure has been developed as an efficient OER electrocatalyst in both acidic and alkaline electrolyte. Specifically, compared with commercial RuO2 , the catalyst displays a superior reaction kinetics with small Tafel slope of 54.6 mV dec-1 in 0.5 M H2 SO4 , thus allowing a low overpotential of 237 and 327 mV to achieve the current density of 10 and 100 mA cm-2 , respectively, which is attributed to the enhanced electrochemically active surface area from the porous structure and the increased intrinsic activity owing to the regulated Ru>4+ proportion with Mn incorporation. Additionally, the sacrificial dissolution of Mn relieves the leaching of active Ru species, leading to the extended OER durability. Besides, the Ru0.75 Mn0.25 O2-δ catalyst also shows a highly improved OER performance in alkaline electrolyte, rendering it a versatile catalyst for water splitting.

SELECTION OF CITATIONS
SEARCH DETAIL
...