Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 14(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38921907

ABSTRACT

Lithium niobate (LiNbO3) single-crystal nanodevices featuring elevated readout domain wall currents exhibit significant potential for integrated circuits in memory computing applications. Nevertheless, challenges stem from suboptimal electrode-LiNbO3 single crystal contact characteristics, which impact the stability of high currents within these devices. In this work, we concentrate on augmenting the domain wall current by refining the fabrication processes of domain wall random access memory (DWRAM). Each LiNbO3 domain wall nanodevice was fabricated using a self-aligned process. Device performance was significantly enhanced by introducing a 10 nm interlayer between the LiNbO3 and Cu electrodes. A comparative analysis of electrical properties was conducted on devices with interlayers made of chromium (Cr) and titanium (Ti), as well as devices without interlayers. After the introduction of the Ti interlayer, the device's coercive voltage demonstrated an 82% reduction, while the current density showed a remarkable 94-fold increase. A 100 nm sized device with the Ti interlayer underwent positive down-negative up pulse testing, demonstrating a writing time of 82 ns at 8 V and an erasing time of 12 µs at -9 V. These operating speeds are significantly faster than those of devices without interlayers. Moreover, the enhanced devices exhibited symmetrical domain switching hysteresis loops with retention times exceeding 106 s. Notably, the coercive voltage (Vc) dispersion remained narrow after more than 1000 switching cycles. At an elevated temperature of 400 K, the device's on/off ratio was maintained at 105. The device's embedded selector demonstrated an ultrahigh selectivity (>106) across various reading voltages. These results underscore the viability of high-density nanoscale integration of ferroelectric domain wall memory.

2.
Nanomaterials (Basel) ; 13(20)2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37887940

ABSTRACT

Single LiNbO3 (LNO) crystals are widely utilized in surface acoustic wave devices, optoelectronic devices, and novel ferroelectric memory devices due to their remarkable electro-optic and piezoelectric properties, and high saturation and remnant polarizations. However, challenges remain regarding their nanofabrication that hinder their applications. The prevailing etching techniques for LNO encompass dry etching, wet etching, and focused-ion-beam etching, each having distinct merits and demerits. Achieving higher etching rates and improved sidewall angles presents a challenge in LNO nanofabrication. Building upon the current etching researches, this study explores various etching methods using instruments capable of generating diverse plasma densities, such as dry etching in reactive ion etching (RIE) and inductively coupled plasma (ICP), proton exchange-enhanced etching, and wet chemical etching following high-temperature reduction treatment, as well as hybrid dry and wet etching. Ultimately, after employing RIE dry etching combined with wet etching, following a high-temperature reduction treatment, an etching rate of 10 nm/min and pretty 90° sidewall angles were achieved. Furthermore, high etching rates of 79 nm/min with steep sidewall angles of 83° were obtained using ICP dry etching. Additionally, using SiO2 masks, a high etching rate of 108 nm/min and an etching selectivity ratio of 0.86:1 were achieved. Distinct etching conditions yielded diverse yet exceptional results, providing multiple processing paths of etching for the versatile application of LNO.

SELECTION OF CITATIONS
SEARCH DETAIL
...