Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 13(13)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37446475

ABSTRACT

In this work, we developed pre-grown annealing to form ß2 reconstruction sites among ß or α (2 × 4) reconstruction phase to promote nucleation for high-density, size/wafer-uniform, photoluminescence (PL)-optimal InAs quantum dot (QD) growth on a large GaAs wafer. Using this, the QD density reached 580 (860) µm-2 at a room-temperature (T) spectral FWHM of 34 (41) meV at the wafer center (and surrounding) (high-rate low-T growth). The smallest FWHM reached 23.6 (24.9) meV at a density of 190 (260) µm-2 (low-rate high-T). The mediate rate formed uniform QDs in the traditional ß phase, at a density of 320 (400) µm-2 and a spectral FWHM of 28 (34) meV, while size-diverse QDs formed in ß2 at a spectral FWHM of 92 (68) meV and a density of 370 (440) µm-2. From atomic-force-microscope QD height distribution and T-dependent PL spectroscopy, it is found that compared to the dense QDs grown in ß phase (mediate rate, 320 µm-2) with the most large dots (240 µm-2), the dense QDs grown in ß2 phase (580 µm-2) show many small dots with inter-dot coupling in favor of unsaturated filling and high injection to large dots for PL. The controllable annealing (T, duration) forms ß2 or ß2-mixed α or ß phase in favor of a wafer-uniform dot island and the faster T change enables optimal T for QD growth.

2.
Nanomaterials (Basel) ; 12(7)2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35407336

ABSTRACT

In this work, we develop single-mode fiber devices of an InAs/GaAs quantum dot (QD) by bonding a fiber array with large smooth facet, small core, and small numerical aperture to QDs in a distributed Bragg reflector planar cavity with vertical light extraction that prove mode overlap and efficient output for plug-and-play stable use and extensive study. Modulated Si doping as electron reservoir builds electric field and level tunnel coupling to reduce fine-structure splitting (FSS) and populate dominant XX and higher excitons XX+ and XXX. Epoxy package thermal stress induces light hole (lh) with various behaviors related to the donor field: lh h1 confined with more anisotropy shows an additional XZ line (its space to the traditional X lines reflects the field intensity) and larger FSS; lh h2 delocalized to wetting layer shows a fast h2-h1 decay; lh h2 confined shows D3h symmetric higher excitons with slow h2-h1 decay and more confined h1 to raise h1-h1 Coulomb interaction.

3.
Plant J ; 96(4): 761-771, 2018 11.
Article in English | MEDLINE | ID: mdl-30112860

ABSTRACT

Stem growth habit is a key plant architecture trait determining yield potential in grain legumes, and the phenotypic change from the indeterminate stem growth habit of wild mungbeans (Vigna radiata) to the determinate stem growth habit of cultivated mungbeans is a critical domestication transition. Here we show that indeterminate stem growth in wild mungbean is modulated by a single gene, VrDet1, which encodes a signaling protein of shoot apical meristems. The transition from an indeterminate to a determinate stem growth habit was achieved by selection of two linked point mutations in two putative cis-regulatory elements, resulting in a significant reduction in gene expression. Both the wild-type nucleotides corresponding to the two point mutations were essential for VrDet1 function. In addition, two highly diverse haplotypes of Vrdet1 were found in cultivated mungbeans, suggesting dual domestication of Vrdet1. VrDet1 was orthologous to Dt1 in wild soybean and PvTFL1y in wild common bean, where multiple loss-of-function mutations altering the coding sequences of individual genes were selected to produce determinate stems in cultivated accessions. Interspecific comparison of these orthologs in the wild and cultivated accessions reveals the most conservative interspecific and intraspecific parallel domestication events with the broadest mutational spectrum of a domestication trait in leguminous crops. We also found that interspecifically and functionally conserved promoters possess cis-regulatory elements that are highly conserved in kind but greatly variable in number and order, demonstrating the evolutionary dynamics of regulatory sequences. This work provides insights into the origins of cultivated mungbean and exemplifies the conservativeness and plasticity of the domestication processes of related crops.


Subject(s)
Crops, Agricultural/genetics , Domestication , Fabaceae/genetics , Mutation , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Base Sequence , Fabaceae/growth & development , Gene Expression Regulation, Plant , Genes, Plant/genetics , Haplotypes , Meristem/genetics , Meristem/growth & development , Phenotype , Sequence Analysis, DNA , Vigna/genetics , Vigna/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...