Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 28(5)2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36903276

ABSTRACT

Two novel electrochromic aromatic polyimides (named as TPA-BIA-PI and TPA-BIB-PI, respectively) with pendent benzimidazole group were synthesized from 1,2-Diphenyl-N,N'-di-4-aminophenyl-5-amino-benzimidazole and 4-Amino-4'-aminophenyl-4″-1-phenyl-benzimidazolyl-phenyl-aniline with 4,4'-(hexafluoroisopropane) phthalic anhydride (6FDA) via two-step polymerization process, respectively. Then, polyimide films were prepared on ITO-conductive glass by electrostatic spraying, and their electrochromic properties were studied. The results showed that due to the π-π* transitions, the maximum UV-Vis absorption bands of TPA-BIA-PI and TPA-BIB-PI films were located at about 314 nm and 346 nm, respectively. A pair of reversible redox peaks of TPA-BIA-PI and TPA-BIB-PI films that were associated with noticeable color changed from original yellow to dark blue and green were observed in the cyclic voltammetry (CV) test. With increasing voltage, new absorption peaks of TPA-BIA-PI and TPA-BIB-PI films emerged at 755 nm and 762 nm, respectively. The switching/bleaching times of TPA-BIA-PI and TPA-BIB-PI films were 13 s/16 s and 13.9 s/9.5 s, respectively, showing that these polyimides can be used as novel electrochromic materials.

2.
Chemosphere ; 289: 133205, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34890624

ABSTRACT

Herein, we obtained porous hollow carboxyl-polysulfone (PH-CPSF) microspheres through non-solvent-induced phase separation (NIPS) method and simple modification, used as highly efficient adsorbents for removing cationic dyes from sewage. The resulting PH-CPSF microspheres possess a hollow core and sponge-like shell structure, with high surface area, durable chemical inertness and structural stability. The as-synthesized PH-CPSF microspheres deliver a desirable adsorption effect after deprotonation treatment, with an adsorption capacity reaching up to 154.5 mg g-1 at 25 °C (pH = 7) of methylene blue (MB). The inter-molecular interactions between MB and the surface of the PH-CPSF, including π-π interaction, hydrogen bonding, strong charge attraction and weak charge attraction endow the adsorption ability of the PH-CPSF. The pseudo-second-order kinetic model pronounces in the adsorption behavior, and the adsorption equilibrium data is fitted to the Langmuir model. Moreover, PH-CPSF microspheres can also be used as adsorption fillers for large-scale water purification, and a removal rate of 94.0% for MB can be achieved under a flow rate of 8000 L m-3 h-1. The reusability of 95.3% removal effect for PH-CPSF microspheres after 20 consecutive cycles can be attained by a simple regeneration treatment. The adsorption efficiency of the PH-CPSF microspheres was evaluated by variety of cationic and anionic dyes, with high adsorption capacity toward cationic dyes (100%) and less than 10% toward anionic dyes. These results manifest that PH-CPSF microspheres are a potential adsorbent with long-term purification capabilities, which are expected to be used in small and large-scale sewage treatment.


Subject(s)
Coloring Agents , Water Pollutants, Chemical , Adsorption , Microspheres , Polymers , Porosity , Sulfones
3.
Front Chem ; 9: 753741, 2021.
Article in English | MEDLINE | ID: mdl-34738005

ABSTRACT

Nanosized titanium oxide (TiO2)-based photocatalysts have exhibited great potential for the degradation of organic contaminants, while their weak absorption of visible light limits the photocatalytic efficiency. Herein, a novel reduced graphene oxide/TiO2-polyphenylenesulfone (rGO/TiO2-PPSU) hybrid ultrafiltration membrane has been successfully prepared via a non-solvent induced phase-separation method, in which the synergistic coupling between the rGO and TiO2 could endowed the fabricated membranes with visible-light-driven efficient photocatalytically degradation of organic pollutants and outstanding photocatalytic and antifouling properties. Compared with the PPSU membranes prepared with Graphene oxide and TiO2, respectively, the rGO/TiO2-PPSU membrane demonstrated significant photodegradation towards phenazopyridine hydrochloride (PhP) solution under ultraviolet light (improved about 71 and 43%) and visible light (improved about 153 and 103%). The permeability and flux recovery rates of the membrane indicated that the high flux of the rGO/TiO2-PPSU membrane can be greatly restored after fouling, due to the improved self-cleaning properties under visible light static irradiation. With the properties of high performance of photocatalytic degradation and good self-cleaning ability, the rGO/TiO2-PPSU membrane would have great potential in water treatment.

4.
Polymers (Basel) ; 13(3)2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33494382

ABSTRACT

Nanosized titanium oxide (TiO2) material is a promising photocatalyst for the degradation of organic pollutants, whereas the difficulty of its recycling hinders its practical application. Herein, we reported the preparation of a novel titanium oxide/polysulfone (TiNPs/PSF) composite hollow microspheres by the combination of Pickering emulsification and the solvent evaporation technique and their application for the photodegradation of methyl blue (MB). P25 TiO2 nanoparticles dispersed on the surface of PSF microspheres. The porosity, density and photoactivity of the TiNPs/PSF composite microsphere are influenced by the TiO2 loading amount. The composite microsphere showed good methyl blue (MB) removal ability. Compared with TiO2 P25, and PSF, a much higher MB adsorption speed was observed for TiNPs/PSF microspheres benefited from their porous structure and the electrostatic attractions between the MB+ and the negatively charged PSF materials, and showed good degradation efficiency. For TiNPs/PSF composite microsphere with density close to 1, a 100% MB removal (10 mg L-1) within 120 min at a catalyst loading of 2.5 g L-1 can be obtained under both stirring and static condition, due to well dispersing of TiO2 particles on the microsphere surface and its stable suspending in water. For the non-suspended TiNPs/PSF composite microsphere with density bigger than 1, the 100% MB removal can be only obtained under stirring condition. The removal efficiency of MB for the composite microspheres retained 96.5%, even after 20 cycles. Moreover, this composite microsphere also showed high MB removal ability at acidic condition. The high catalysis efficiency, excellent reusability and good stability make this kind of TiNPs/PSF composite microsphere a promising photocatalyst for the water organic pollution treatment.

5.
RSC Adv ; 11(25): 15231-15244, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-35424037

ABSTRACT

Zwitterionic nano-silica (SiO2 NPs) obtained by lysine surface modification was used as a hydrophilic inorganic filler for preparing a poly(aryl ether nitrile) (PEN) nanocomposite membrane via an immersion precipitation phase inversion method. The effects of zwitterionic SiO2 NPs addition on the morphology, separation and antifouling performance of the synthesized membranes were investigated. Zwitterionic surface modification effectively avoided the agglomeration of SiO2 NPs. The PEN/zwitterionic SiO2 NPs composite membranes exhibited improved porosity, equilibrium water content, hydrophilicity and permeability due to the introduction of hydrophilic SiO2 NPs in the casting solution, and the optimal pure water flux was up to 507.2 L m-2 h-1, while the BSA rejection ratio was maintained at 97.4%. A static adsorption capacity of 72.9 µg cm-2 and the FRR up to 85.3% in the dynamic antifouling experiment proved that the introduction of zwitterionic SiO2 NPs inhibited irreversible fouling and enhanced the antifouling ability of the PEN membrane.

6.
RSC Adv ; 11(6): 3770-3776, 2021 Jan 14.
Article in English | MEDLINE | ID: mdl-35424274

ABSTRACT

5-Amine-2-(4-amino-benzene)-1-phenyl-benzimidazole (N-PhPABZ) was successfully synthesized and polymerized with 3,3',4,4'-biphenyl tetracarboxylic dianhydride (BPDA) to obtain a novel N-phenyl-poly(benzimidazole imide) (N-Ph-PBII). The successful incorporation of N-phenyl addressed the issue of high H2O-absorption of traditional PBIIs while retained the superheat resistance property. The resulting N-Ph-PBII possessed a high glass-transition temperature (T g) up to 425 °C and a low affinity for water of 1.4%. Furthermore, the loose molecular packing and noncoplanar structures led to an increase in optical transparency for the modified PBII.

7.
RSC Adv ; 11(28): 16924-16930, 2021 May 06.
Article in English | MEDLINE | ID: mdl-35479694

ABSTRACT

A novel diamine named (2,2'-bibenzoxazole)-5,5'-diamine (DBOA) and derived polyimides (PIs) were successfully synthesized. The rigid, linear, symmetrical molecular structure and the strong charge transfer complex (CTC) were considered to be the reasons for the improved molecular packing and enhanced thermal properties of the polymers. These DBOA based PIs exhibited a higher glass transition temperature (T g) and lower coefficient of thermal expansion (CTE) than traditional benzoxazole (BOA) based PIs. Meanwhile, the PI derived from DBOA and BPDA (3,3',4,4'-biphenyltetracarboxylic dianhydride) exhibited high T g (395 °C) and low CTE (8.9 ppm per °C), and is expected to be applied in organic light-emitting diode (OLED) displays.

8.
Water Sci Technol ; 82(12): 2847-2856, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33341775

ABSTRACT

A new kind of flat sheet ultrafiltration membrane was prepared by a promising membrane material, poly (aryl ether nitrile) (PEN), via non-solvent induced phase separation. The effect of solvents, N-methyl-2-pyrrolidone (NMP) and dimethyl acetamide (DMAc), as well as additive of poly (ethylene glycol) (PEG) with different molecular weights on the structure and permeation performance of synthesized membranes were investigated. Comparing with NMP, DMAc is more suitable for the casting solution preparation due to better solubility. A gradually changing pore from sponge-like to finger-like can be observed when PEG was added with DMAc as solvent, while a finger-like pore structure always appears in the NMP system with or without PEG. In both systems, the formation of macrovoids is effectively promoted by the addition of PEG, and higher porosity membranes can be obtained by PEG with higher molecular weight. With the increase of PEG molecular weight from 400 to 10,000 Da, the permeate flux increases from 74.5 to 114.3 L·m-2·h-1 and from 102.0 to 130.8 L·m-2·h-1 under a 100 kPa pressure-driven when NMP and DMAc were used as solvents, respectively. The membranes prepared by DMAc exhibit outstanding rejection of BSA with rejections all above 96.5%.


Subject(s)
Polyethylene Glycols , Ultrafiltration , Ether , Ethers , Membranes, Artificial , Nitriles , Polymers
SELECTION OF CITATIONS
SEARCH DETAIL
...